Generalized block Lanczos methods for large unsymmetric eigenproblems
نویسنده
چکیده
Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error bounds for Ritz elements are established. Compared with generalized Lanczos methods, which contain Arnoldi’s method, the convergence analysis shows that the block versions have two advantages: First, they may be efficient for computing clustered eigenvalues; second, they are able to solve multiple eigenproblems. However, a deep analysis exposes that the approximate eigenvectors or Ritz vectors obtained by general orthogonal projection methods including generalized block methods may fail to converge theoretically for a general unsymmetric matrix A even if corresponding approximate eigenvalues or Ritz values do, since the convergence of Ritz vectors needs more sufficient conditions, which may be impossible to satisfy theoretically, than that of Ritz values does. The issues of how to restart and to solve multiple eigenproblems are addressed, and some numerical examples are reported to confirm the theoretical analysis.
منابع مشابه
A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems
An \industrial strength" algorithm for solving sparse symmetric generalized eigenproblems is described. The algorithm has its foundations in known techniques in solving sparse symmetric eigenproblems, notably the spectral transformation of Ericsson and Ruhe and the block Lanczos algorithm. However, the combination of these two techniques is not trivial; there are many pitfalls awaiting the unwa...
متن کاملAn effective method for eigen-problem solution of fluid-structure systems
Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...
متن کاملA Model-Order Reduction Technique for Low Rank Rational Perturbations of Linear Eigenproblems
Large and sparse rational eigenproblems where the rational term is of low rank k arise in vibrations of fluid–solid structures and of plates with elastically attached loads. Exploiting model order reduction techniques, namely the Padé approximation via block Lanczos method, problems of this type can be reduced to k–dimensional rational eigenproblems which can be solved efficiently by safeguarde...
متن کاملOn the squared unsymmetric Lanczos method
The biorthogonal Lanczos and the biconjugate gradient methods have been proposed as iterative methods to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld (1989) obtained the conjugate gradient squared by squaring the matrix polynomials of the biconjugate gradient method. Here we square the unsymmetric (or biorthogonal) Lanczos method for computing the eigenvalue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 80 شماره
صفحات -
تاریخ انتشار 1998