A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations

نویسندگان

  • CHUNTAO LIU
  • EDWARD J. ZIPSER
  • DANIEL J. CECIL
  • STEPHEN W. NESBITT
  • STEVEN SHERWOOD
چکیده

An event-based method of analyzing the measurements from multiple satellite sensors is presented by using observations of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), and Lightning Imaging System (LIS). First, the observations from PR, VIRS, TMI, and LIS are temporally and spatially collocated. Then the cloud and precipitation features are defined by grouping contiguous pixels using various criteria, including surface rain, cold infrared, or microwave brightness temperature. The characteristics of measurements from different sensors inside these features are summarized. Then, climatological descriptions of many properties of the identified features are generated. This analysis method condenses the original information of pixellevel measurements into the properties of events, which can greatly increase the efficiency of searching and sorting the observed historical events. Using the TRMM cloud and precipitation feature database, the regional variations of rainfall contribution by features with different size, intensity, and PR reflectivity vertical structure are shown. Above the freezing level, land storms tend to have larger 20-dBZ area and reach higher altitude than is the case for oceanic storms, especially those land storms over central Africa. Horizontal size and the maximum reflectivity of oceanic storms decrease with altitude. For land storms, these intensity measures increase with altitude between 2 km and the freezing level and decrease more slowly with altitude above the freezing level than for ocean storms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TRMM-Based Tropical Cyclone Cloud and Precipitation Feature Database

The Tropical Rainfall Measuring Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. The challenge, however, is how to analyze and efficiently utilize all of the information from several instruments on TRMM that observe the same target. In this study, a tropical cyclone precipitation, cloud, and convective cell feature (TCPF) database has...

متن کامل

Implications of the differences between daytime and nighttime CloudSat observations over the tropics

[1] Using 1 year of CloudSat level 2B Cloud Geometrical Profile product, the vertical structures, geographical distributions, and seasonal variations of cloud occurrence at the daytime (1330 LT) and the nighttime (0130 LT) overpasses and their differences over tropical land and ocean are presented separately. The differences between the cloud and precipitation occurrence at 0130 and 1330 LT and...

متن کامل

Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations

[1] The diurnal cycles of surface rainfall, population of precipitation systems, deep intense convection reaching near the tropopause, lightning flash counts, cold clouds, and vertical structure of precipitation are analyzed over the tropics, using 9 years of TRMM Precipitation Radar, Visible and Infrared Scanner, and Lightning Imaging Sensor measurements. The diurnal cycles over land include a...

متن کامل

Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM) 3B-43 precipitation produc...

متن کامل

Evaluation of Precipitation Products of TRMM Satellite in Precipitation and Erosion Rate Monitoring across Iran

Extended abstract 1- Introduction     In order to calculate the erosive power of rainfall, high-resolution precipitation data are necessary for rainfall erosion evaluation. However, collecting the required data on kinetic energy of the rainfall particles and precipitation rates with short-term temporal resolution is a time-intensive task, particularly in developing countries, and the collecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008