Genetic algorithms and fuzzy control: a practical synergism for industrial applications

نویسندگان

  • Gerardo Acosta
  • Elias Todorovich
چکیده

A way to automatically generate fuzzy controllers (FCs) that are optimized according to a merit figure is presented in this article. To achieve this task, a procedure based on hierarchical genetic algorithms (HGA) was developed. This procedure and the manner in which fuzzy controllers are codified into chromosomes is described. Resorting to this tool, several fuzzy controllers were constructed. The best three solutions obtained during simulation were selected for testing using an experimental prototype, which consists of an induction motor of variable load. These preliminary results are also included in the report. Based on these results, it is concluded that hierarchical genetic algorithms, though not the only, is a suitable artificial intelligence technique to face the problem of setting a fuzzy controller in a control loop without previous experience in controlling the plant. This is of help in many situations at industrial environments. # 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions

The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...

متن کامل

Soft Computing Techniques and Their Applications

The modern science is still striving to develop consciousness-based machine. The forecasting is an intuition-based or consciousness-based problem. It is an important problem for planning, decision-making and designing of an appropriate controller for the systems. The paper deals with the synergism of soft computing techniques mainly artificial neural network, fuzzy logic systems, and genetic al...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

Optimization of e-Learning Model Using Fuzzy Genetic Algorithm

E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...

متن کامل

Developing new methods to monitor phase II fuzzy linear profiles

In some quality control applications, the quality of a process or a product is described by the relationship between a response variable and one or more explanatory variables, called a profile. Moreover, in most practical applications, the qualitative characteristic of a product/service is vague, uncertain and linguistic and cannot be precisely stated. The purpose of this paper is to propose a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in Industry

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2003