Skeletal Muscle Performance Determined by Modulation of Number of Myosin Motors Rather Than Motor Force or Stroke Size

نویسندگان

  • Gabriella Piazzesi
  • Massimo Reconditi
  • Marco Linari
  • Leonardo Lucii
  • Pasquale Bianco
  • Elisabetta Brunello
  • Valérie Decostre
  • Alex Stewart
  • David B. Gore
  • Thomas C. Irving
  • Malcolm Irving
  • Vincenzo Lombardi
چکیده

Skeletal muscle can bear a high load at constant length, or shorten rapidly when the load is low. This force-velocity relationship is the primary determinant of muscle performance in vivo. Here we exploited the quasi-crystalline order of myosin II motors in muscle filaments to determine the molecular basis of this relationship by X-ray interference and mechanical measurements on intact single cells. We found that, during muscle shortening at a wide range of velocities, individual myosin motors maintain a force of about 6 pN while pulling an actin filament through a 6 nm stroke, then quickly detach when the motor reaches a critical conformation. Thus we show that the force-velocity relationship is primarily a result of a reduction in the number of motors attached to actin in each filament in proportion to the filament load. These results explain muscle performance and efficiency in terms of the molecular mechanism of the myosin motor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature effect on the chemomechanical regulation of substeps within the power stroke of a single Myosin II

Myosin IIs in the skeletal muscle are highly efficient nanoscale machines evolved in nature. Understanding how they function can not only bring insights into various biological processes but also provide guidelines to engineer synthetic nanoscale motors working in the vicinity of thermal noise. Though it was clearly demonstrated that the behavior of a skeletal muscle fiber, or that of a single ...

متن کامل

Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model.

Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or m...

متن کامل

The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site.

Skeletal muscle shortens faster against a lower load. This force-velocity relationship is the fundamental determinant of muscle performance in vivo and is due to ATP-driven working strokes of myosin II motors, during their cyclic interactions with the actin filament in each half-sarcomere. Crystallographic studies suggest that the working stroke is associated with the release of phosphate (Pi) ...

متن کامل

A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle.

A conventional five-step chemo-mechanical cycle of the myosin-actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why t...

متن کامل

Coordinated force generation of skeletal myosins in myofilaments through motor coupling

In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2007