Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge.
نویسندگان
چکیده
Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor susceptibility-1 and its homoeologs increases upon insect infestation. Ectopic expression of Mayetiola destructor susceptibility-1 or induction by heat shock suppresses resistance of wheat mediated by the resistance gene H13 to Hessian fly. Silencing of Mayetiola destructor susceptibility-1 by RNA interference confers immunity to all Hessian fly biotypes on normally susceptible wheat genotypes. Mayetiola destructor susceptibility-1-silenced plants also show reduced lesion formation due to infection by the powdery mildew fungus Blumeria graminis f. sp. tritici. Modification of susceptibility genes may provide broad and durable sources of resistance to Hessian fly, B. graminis f. sp. tritici, and other pests.
منابع مشابه
Transcriptomic Analyses of Secreted Proteins From the Salivary Glands of Wheat Midge Larvae
Both the wheat midge (Sitodiplosis mosellana) (Géhin) (Diptera: Cecidomyiidae) and the Hessian fly (Mayetiola destructor) (Say) (Diptera: Cecidomyiidae) belong to a group of insects called gall midges (Diptera: Cecidomyiidae), and both are destructive pests of wheat. From Hessian fly larvae, a large number of genes have been identified to encode secreted salivary gland proteins (SSGPs), which a...
متن کاملThe gut transcriptome of a gall midge, Mayetiola destructor.
The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut p...
متن کاملUnbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat
Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly...
متن کاملAvirulence Effector Discovery in a Plant Galling and Plant Parasitic Arthropod, the Hessian Fly (Mayetiola destructor)
Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins to defeat basal plant immunity and modulate plant growth. Because avirulence (Avr) gene discovery ...
متن کاملGall Midge Olfaction and its Role in Speciation
With the swede midge (Contarinia nasturtii) as our main model species, we study two types of olfactory cues that are of importance for gall midges: 1) the pheromones emitted by the female to attract the male; 2) and the host plant volatiles that the females use when finding a host for oviposition. We found that both the blend of compounds and the enantioisomeric form are important for male attr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013