A Flag Whitney Number Formula for Matroid Kazhdan-Lusztig Polynomials

نویسنده

  • Max Wakefield
چکیده

For a representation of a matroid the combinatorially defined Kazhdan-Lusztig polynomial computes the intersection cohomology of the associated reciprocal plane. However, these polynomials are difficult to compute and there are numerous open conjectures about their structure. For example, it is unknown whether or not the coefficients are non-negative for non-representable matroids. The main result in this note is a combinatorial formula for the coefficients of these matroid KazhdanLusztig polynomials in terms of flag Whitney numbers. This formula gives insight into some vanishing behavior of the matroid Kazhdan-Lusztig polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Z-Polynomial of a Matroid

We introduce the Z-polynomial of a matroid, which we define in terms of the Kazhdan-Lusztig polynomial. We then exploit a symmetry of the Z-polynomial to derive a new recursion for Kazhdan-Lusztig coefficients. We solve this recursion, obtaining a closed formula for Kazhdan-Lusztig coefficients as alternating sums of multi-indexed Whitney numbers. For realizable matroids, we give a cohomologica...

متن کامل

Kazhdan-Lusztig Polynomials of Thagomizer Matroids

We introduce thagomizer matroids and compute the Kazhdan-Lusztig polynomial of a rank n+1 thagomizer matroid by showing that the coefficient of tk is equal to the number of Dyck paths of semilength n with k long ascents. We also give a conjecture for the Sn-equivariant Kazhdan-Lusztig polynomial of a thagomizer matroid.

متن کامل

The Kazhdan-Lusztig polynomial of a matroid

We associate to every matroid M a polynomial with integer coefficients, which we call the Kazhdan-Lusztig polynomial of M , in analogy with Kazhdan-Lusztig polynomials in representation theory. We conjecture that the coefficients are always non-negative, and we prove this conjecture for representable matroids by interpreting our polynomials as intersection cohomology Poincaré polynomials. We al...

متن کامل

Configuration spaces, FS-modules, and Kazhdan-Lusztig polynomials of braid matroids

The equivariant Kazhdan-Lusztig polynomial of a braid matroid may be interpreted as the intersection cohomology of a certain partial compactification of the configuration space of n distinct labeled points in C, regarded as a graded representation of the symmetric group Sn. We show that, in fixed cohomological degree, this sequence of representations of symmetric groups naturally admits the str...

متن کامل

A Kato–lusztig Formula for Nonsymmetric Macdonald Polynomials

We prove a nonsymmetric analogue of a formula of Kato and Lusztig which describes the coefficients of the expansion of irreducible Weyl characters in terms of (degenerate) symmetric Macdonald polynomials as certain Kazhdan–Lusztig polynomials. We also establish precise polynomiality results for coefficients of symmetric and nonsymmetric Macdonald polynomials and a version of Demazure’s characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2018