A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries
نویسندگان
چکیده
In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla and known as deferred correction, has been intensively utilized by Muzaferija and later Fergizer and Peric to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.
منابع مشابه
Incompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملFinite Volume Solution of a Cylinder in Cross Flow with Heat Transfer
A finite-volume model has been developed to study incompressible forced flow heat transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied to couple the continuity to the momentum equations. The proposed explicit finite-volume method (FVM) uses a novel discretization in time and space. The governing equations are solved by time-marching using a ...
متن کاملA Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces
A finite volume scheme for transport and diffusion problems on evolving hypersurfaces is discussed. The underlying motion is assumed to be described by a fixed, not necessarily normal, velocity field. The ingredients of the numerical method are an approximation of the family of surfaces by a family of interpolating simplicial meshes, where grid vertices move on motion trajectories, a consistent...
متن کاملPositive cell-centered finite volume discretization methods for hyperbolic equations on irregular meshes
The conditions sufficient to ensure positivity and linearity preservation for a cell-centered finite volume scheme for time-dependent hyperbolic equations using irregular one-dimensional and triangular two-dimensional meshes are derived. The conditions require standard flux limiters to be modified and also involve possible constraints on the meshes. The accuracy of this finite volume scheme is ...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009