Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus.

نویسندگان

  • Yoshie Fujimori
  • Tetsuya Sato
  • Taishi Hayata
  • Tomokazu Nagao
  • Mikio Nakayama
  • Tsuruo Nakayama
  • Ryuichi Sugamata
  • Kazuo Suzuki
چکیده

We investigated the antiviral activity of nanosized copper(I) iodide (CuI) particles having an average size of 160 nm. CuI particles showed aqueous stability and generated hydroxyl radicals, which were probably derived from monovalent copper (Cu(+)). We confirmed that CuI particles showed antiviral activity against an influenza A virus of swine origin (pandemic [H1N1] 2009) by plaque titration assay. The virus titer decreased in a dose-dependent manner upon incubation with CuI particles, with the 50% effective concentration being approximately 17 μg/ml after exposure for 60 min. SDS-PAGE analysis confirmed the inactivation of the virus due to the degradation of viral proteins such as hemagglutinin and neuraminidase by CuI. Electron spin resonance (ESR) spectroscopy revealed that CuI generates hydroxyl radicals in aqueous solution, and radical production was found to be blocked by the radical scavenger N-acetylcysteine. Taken together, these findings indicate that CuI particles exert antiviral activity by generating hydroxyl radicals. Thus, CuI may be a useful material for protecting against viral attacks and may be suitable for applications such as filters, face masks, protective clothing, and kitchen cloths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription

Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...

متن کامل

Novel Pandemic Influenza A(H1N1) Viruses Are Potently Inhibited by DAS181, a Sialidase Fusion Protein

BACKGROUND The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal infl...

متن کامل

High Titers of Hemagglutination Inhibition Antibodies against 2009 H1N1 Influenza Virus in Southern Iran

Background: Pandemic flu had at least two waves in Iran. Knowing how many of the general population were already exposed to this infection has a major impact on na-tional preventive measures. As of December 30, 2009, a total of 3672 confirmed cases of human infection with a novel Influenza A (2009 H1N1) virus had been reported in Iran with 140 deaths. Objective: In this study we aim to measure,...

متن کامل

Antiviral Effect of Chlorine Dioxide against Influenza Virus and Its Application for Infection Control

Influenza is a respiratory tract infection, causing pandemic outbreaks. Spanish flu (A/H1N1), a pandemic occurred between 1918 and 1919, tolled patients and fatalities of 500 million and 50 million, respectively. Recently, human infection with highly pathogenic avian influenza A/H5N1 and swine influenza [Pandemic (H1N1) 2009] was reported. Because of the population explosion and busy global air...

متن کامل

Detection of Seasonal Influenza H1N1 and H3N2 Viruses using RT-PCR Assay during 2009 Flu Pandemic in Golestan Province

Abstract Background and Objective: The emergence of a novel H1N1influenza A virus of animal origin with transmissibility from human to human poses pandemic concern. Current subtypes of Seasonal influenza A viruses spread in human are influenza A H1N1 influenza A H3N2 and influenza type B viruses. The aim of this study was to determine current strains of the H3N2 and new H1N1 subtypes of influe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 4  شماره 

صفحات  -

تاریخ انتشار 2012