Evaluating the Wisdom of Crowds

نویسنده

  • Christian Wagner
چکیده

Estimating and forecasting are difficult tasks. This is true whether the activity requires the determination of uncertain future event outcomes, or whether the estimation effort is complex in itself and based on insufficient information. Consequently, such tasks are frequently assigned to experts. Surprisingly, recent research suggests that collectives of non-experts can outperform individual experts, as long as certain conditions are met. The resulting capability has been described as collective intelligence or “wisdom of crowds”. Our research explores this collective intelligence, for real and simulated crowds. An empirical test demonstrates that even a relatively small crowd of 30 subjects can demonstrate expertlike performance. A further investigation through simulation shows that the performance of a collective predictably compares to that of an expert, with the expert outperforming small crowds but being outperformed by large collectives. The relationship between performance and log of collective size follows a linear function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

CEKA: a tool for mining the wisdom of crowds

CEKA is a software package for developers and researchers to mine the wisdom of crowds. It makes the entire knowledge discovery procedure much easier, including analyzing qualities of workers, simulating labeling behaviors, inferring true class labels of instances, filtering and correcting mislabeled instances (noise), building learning models and evaluating them. It integrates a set of state-o...

متن کامل

Wisdom of Crowds cluster ensemble

The Wisdom of Crowds is a phenomenon described in social science that suggests four criteria applicable to groups of people. It is claimed that, if these criteria are satisfied, then the aggregate decisions made by a group will often be better than those of its individual members. Inspired by this concept, we present a novel feedback framework for the cluster ensemble problem, which we call Wis...

متن کامل

Modeling Wisdom of Crowds Using Latent Mixture of Discriminative Experts

In many computational linguistic scenarios, training labels are subjectives making it necessary to acquire the opinions of multiple annotators/experts, which is referred to as ”wisdom of crowds”. In this paper, we propose a new approach for modeling wisdom of crowds based on the Latent Mixture of Discriminative Experts (LMDE) model that can automatically learn the prototypical patterns and hidd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010