A robust inner-outer HSS preconditioner
نویسنده
چکیده
This paper presents an inner-outer preconditioner for symmetric positive definite matrices based on hierarchically semiseparable (HSS) matrix representation. A sequence of new HSS algorithms are developed, including some ULV-type HSS methods and triangular HSS methods. During the construction of this preconditioner, off-diagonal blocks are compressed in parallel, and an approximate HSS form is used as the outer HSS representation. In the meantime, the internal dense diagonal blocks are approximately factorized into HSS Cholesky factors. Such inner factorizations are guaranteed to exist for any approximation accuracy. The inner-outer preconditioner combines the advantages of both direct HSS and triangular HSS methods, and are both scalable and robust. Systematic complexity analysis and discussions of the errors are presented. Various tests on some practical numerical problems are used to demonstrate the efficiency and robustness. In particular, the effectiveness of the preconditioner in iterative solutions has been shown for some illconditioned problems. This work also gives a practical way of developing inner-outer preconditioners using direct rank structured factorizations (other than iterative methods). Copyright c © 2011 John Wiley & Sons, Ltd.
منابع مشابه
Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media
In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards’ equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a desig...
متن کاملA black box generalized conjugate gradient minimum residual method based on variable preconditioners and local element approximations
In order to control the accuracy of a preconditioner for an outer iterative process one often involves variable preconditioners. The variability may for instance be due to the use of inner iterations in the construction of the preconditioner. Both the outer and inner iterations may be based on some conjugate gradient type of method, e.g. generalized minimum residual methods. A background for su...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملRobust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices
Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...
متن کاملOn Newton-hss Methods for Systems of Nonlinear Equations with Positive-definite Jacobian Matrices
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobi...
متن کامل