Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation
نویسندگان
چکیده
Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of objectness priors to generate foreground/background masks. Unfortunately these priors either require pixel-level annotations/bounding boxes, or still yield inaccurate object boundaries. Here, we propose a novel method to extract accurate masks from networks pre-trained for the task of object recognition, thus forgoing external objectness modules. We first show how foreground/background masks can be obtained from the activations of higher-level convolutional layers of a network. We then show how to obtain multi-class masks by the fusion of foreground/background ones with information extracted from a weakly-supervised localization network. Our experiments evidence that exploiting these masks in conjunction with a weakly-supervised training loss yields state-of-the-art tag-based weakly-supervised semantic segmentation results.
منابع مشابه
Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation
Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of ob...
متن کاملGenerative ScatterNet Hybrid Deep Learning (G-SHDL) Network with Structural Priors for Semantic Image Segmentation
This paper proposes a generative ScatterNet hybrid deep learning (G-SHDL) network for semantic image segmentation. The proposed generative architecture is able to train rapidly from relatively small labeled datasets using the introduced structural priors. In addition, the number of filters in each layer of the architecture is optimized resulting in a computationally efficient architecture. The ...
متن کاملTell Me Where to Look: Guided Attention Inference Network
Weakly supervised learning with only coarse labels can obtain visual explanations of deep neural network such as attention maps by back-propagating gradients. These attention maps are then available as priors for tasks such as object localization and semantic segmentation. In one common framework we address three shortcomings of previous approaches in modeling such attention maps: We (1) first ...
متن کاملWeakly Supervised Semantic Segmentation Using Superpixel Pooling Network
We propose a weakly supervised semantic segmentation algorithm based on deep neural networks, which relies on imagelevel class labels only. The proposed algorithm alternates between generating segmentation annotations and learning a semantic segmentation network using the generated annotations. A key determinant of success in this framework is the capability to construct reliable initial annota...
متن کاملAmortized Inference and Learning in Latent Conditional Random Fields for Weakly-Supervised Semantic Image Segmentation
Conditional random fields (CRFs) are commonly employed as a post-processing tool for image segmentation tasks. The unary potentials of the CRF are often learnt independently by a classifier, thereby decoupling the inference in CRF from the training of classifier. Such a scheme works effectively, when pixel-level labelling is available for all the images. However, in absence of pixel-level label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on pattern analysis and machine intelligence
دوره شماره
صفحات -
تاریخ انتشار 2017