Effect of labetalol on cerebral blood flow, oxygen metabolism and autoregulation in healthy humans.

نویسندگان

  • K S Olsen
  • L B Svendsen
  • F S Larsen
  • O B Paulson
چکیده

We have studied the effects of labetalol on cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO2) in eight healthy volunteers. CBF was measured by single photon emission computerized tomography before and during infusion of labetalol. CMRO2 was calculated as CBF x cerebral arteriovenous oxygen content difference (CaO2-CvO2). CBF autoregulation was tested during infusion of labetalol by changing arterial pressure and estimating relative changes in global CBF from changes in (CaO2-CvO2). CBF before and during infusion of labetalol was 67 and 65 ml/100 g min-1, respectively (P > 0.05). CMRO2 was 2.9 and 2.8 ml/100 g min-1, respectively (P > 0.05). CBF autoregulation was preserved in all subjects. The lower limit of CBF autoregulation was 88 mm Hg (94% of baseline mean arterial pressure). We conclude that labetalol did not influence global or regional CBF, or CMRO2, and CBF autoregulation was preserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar autoregulation dynamics in humans.

Knowledge on autoregulation of cerebellar blood flow in humans is scarce. This study investigated whether cerebellar autoregulation dynamics and CO(2) reactivity differ from those of the supratentorial circulation. In 56 healthy young adults, transcranial Doppler (TCD) monitoring of the posterior inferior cerebellar artery (PICA) and, simultaneously, of the contralateral middle cerebral artery ...

متن کامل

Autoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures

Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...

متن کامل

Dynamic cerebral autoregulation during exhaustive exercise in humans.

We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) wh...

متن کامل

Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans.

Cerebral blood flow is maintained constant over a range of cerebral perfusion pressures by cerebral autoregulation. Impaired cerebral autoregulation may be important in the pathogenesis of cerebral ischaemia. The mechanisms mediating normal cerebral autoregulation in humans are poorly understood. We used a recently described transcranial Doppler technique, which allows non-invasive measurement ...

متن کامل

Negative dip in BOLD fMRI is caused by blood flow--oxygen consumption uncoupling in humans.

The sensitivity of MRI for local changes in the deoxyhemoglobin concentration is the basis of the blood oxygen level dependent (BOLD) effect. Time-resolved fMRI studies during visual activation show an early signal intensity (SI) decrease indicating a short lasting uncoupling of oxygen consumption and cerebral blood flow (CBF) before a SI increase due to the overcompensating hemodynamic respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of anaesthesia

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 1995