Acoustic modeling with mixtures of subspace constrained exponential models
نویسندگان
چکیده
Gaussian distributions are usually parameterized with their natural parameters: the mean μ and the covariance Σ. They can also be re-parameterized as exponential models with canonical parameters P = Σ and ψ = Pμ. In this paper we consider modeling acoustics with mixtures of Gaussians parameterized with canonical parameters where the parameters are constrained to lie in a shared affine subspace. This class of models includes Gaussian models with various constraints on its parameters: diagonal covariances, MLLT models, and the recently proposed EMLLT and SPAM models. We describe how to perform maximum likelihood estimation of the subspace and parameters within a fixed subspace. In speech recognition experiments, we show that this model improves upon all of the above classes of models with roughly the same number of parameters and with little computational overhead. In particular we get 30-40% relative improvement over LDA+MLLT models when using roughly the same number of parameters.
منابع مشابه
Segment-Based Acoustic Models for Continuous Speech Recognition
ity or acoustic observations conditioned on the state in Tied-mixture (or semi-continuous) distributions are an imhidden-Markov models (11MM), or for the case of the portant tool for acoustic modeling, used in many highSSM, conditioned on a region of the model. Some of the performance speech recognition systems today. This paper options that have been investigated include discrete dispiovides a...
متن کاملDimensional reduction, covariance modeling, and computational complexity in ASR systems
In this paper, we study acoustic modeling for speech recognition using mixtures of exponential models with linear and quadratic features tied across all context dependent states. These models are one version of the SPAM models introduced in [1]. They generalize diagonal covariance, MLLT, EMLLT, and full covariance models. Reduction of the dimension of the acoustic vectors using LDA/HDA projecti...
متن کاملSubspace distribution clustering hidden Markov model
Most contemporary laboratory recognizers require too much memory to run, and are too slow for mass applications. One major cause of the problem is the large parameter space of their acoustic models. In this paper, we propose a new acoustic modeling methodology which we call subspace distribution clustering hidden Markov modeling (SDCHMM) with the aim at achieving much more compact acoustic mode...
متن کاملAcoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملDiscriminative estimation of subspace precision and mean (SPAM) models
The SPAM model was recently proposed as a very general method for modeling Gaussians with constrained means and covariances. It has been shown to yield significant error rate improvements over other methods of constraining covariances such as diagonal, semi-tied covariances, and extended maximum likelihood linear transformations. In this paper we address the problem of discriminative estimation...
متن کامل