Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.

نویسندگان

  • Hyuk Rok Gwon
  • Suk Tai Chang
  • Chang Kyoung Choi
  • Jung-Yeul Jung
  • Jong-Min Kim
  • Seong Hyuk Lee
چکیده

This study presents a new DEP manipulation technique using a movable liquid electrode, which allows manipulation of particles by actively controlling the locations of electrodes and applying on-off electric input signals. This DEP system consists of mercury as a movable liquid electrode, indium tin oxide (ITO)-coated glass, SU-8-based microchannels for electrode passages, and a PDMS medium chamber. A simple squeezing method was introduced to build a thin PDMS layer at the bottom of the medium chamber to create a contactless DEP system. To determine the operating conditions, the DEP force and the friction force were analytically compared for a single cell. In addition, an appropriate frequency range for effective DEP manipulation was chosen based on an estimation of the Clausius-Mossotti factor and the effective complex permittivity of the yeast cell using the concentric shell model. With this system, we demonstrated the active manipulation of yeast cells, and measured the collection efficiency and the dielectrophoretic velocity of cells for different AC electric field strengths and applied frequencies. The experimental results showed that the maximum collection efficiency reached was approximately 90%, and the dielectrophoretic velocity increased with increasing frequency and attained the maximum value of 10.85 ± 0.95 μm/s at 100 kHz, above which it decreased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and optimization of liquid electrodes for lateral dielectrophoresis.

Using the concept of insulator-based "electrodeless" dielectrophoresis, we present a novel geometry for shaping electric fields to achieve lateral deviation of particles in liquid flows. The field is generated by lateral planar metal electrodes and is guided along access channels to the active area in the main channel. The equipotential surfaces at the apertures of the access channels behave as...

متن کامل

Contactless dielectrophoresis: a new technique for cell manipulation.

Dielectrophoresis (DEP) has become a promising technique to separate and identify cells and microparticles suspended in a medium based on their size or electrical properties. Presented herein is a new technique to provide the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid. In our method, electrodes are capacitively-coupled to a fluidic c...

متن کامل

Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples.

Contactless dielectrophoresis (cDEP) devices are a new adaptation of dielectrophoresis in which fluid electrodes, isolated from the main microfluidic channel by a thin membrane, provide the electric field gradients necessary to manipulate cells. This work presents a continuous sorting device which is the first cDEP design capable of exploiting the Clausius-Mossotti factor at frequencies where i...

متن کامل

Towards Single Molecule Manipulation with Dielectrophoresis Using Nanoelectrodes

We present measurements of the scaling of the dielectrophoresis force with electrode size and particle size, in order to determine the ultimate size limits for dielectrophoresis at the nanoscale. To demonstrate the feasibility of nano-manipulation we present studies on the dielectrophoretic manipulation of DNA with microfabricated electrodes using RF electric fields. We find that DNA undergoes ...

متن کامل

Simultaneous electrokinetic flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields

Microfluidics is a rapidly growing field that offers great potential for many biological and analytical applications. There are important advantages that miniaturization has to offer, such as portability, shorter response times, higher resolution and sensitivity. There is growing interest on the development of microscale techniques. Among these, electrokinetic phenomena have gained significant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electrophoresis

دوره 35 14  شماره 

صفحات  -

تاریخ انتشار 2014