A family of transposable elements co-opted into developmental enhancers in the mouse neocortex
نویسندگان
چکیده
The neocortex is a mammalian-specific structure that is responsible for higher functions such as cognition, emotion and perception. To gain insight into its evolution and the gene regulatory codes that pattern it, we studied the overlap of its active developmental enhancers with transposable element (TE) families and compared this overlap to uniformly shuffled enhancers. Here we show a striking enrichment of the MER130 repeat family among active enhancers in the mouse dorsal cerebral wall, which gives rise to the neocortex, at embryonic day 14.5. We show that MER130 instances preserve a common code of transcriptional regulatory logic, function as enhancers and are adjacent to critical neocortical genes. MER130, a nonautonomous interspersed TE, originates in the tetrapod or possibly Sarcopterygii ancestor, which far predates the appearance of the neocortex. Our results show that MER130 elements were recruited, likely through their common regulatory logic, as neocortical enhancers.
منابع مشابه
Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate
Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS...
متن کاملTransposable Element Exaptation in Plants
While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose, such aswhen feathers originally adapted for insulation became used for flight. Co-opted features are called exaptations. Transposable elements are often viewed as molecular parasites, yet they are frequently the source of ev...
متن کاملExaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?
Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to h...
متن کاملOrigin and evolution of developmental enhancers in the mammalian neocortex.
Morphological innovations such as the mammalian neocortex may involve the evolution of novel regulatory sequences. However, de novo birth of regulatory elements active during morphogenesis has not been extensively studied in mammals. Here, we use H3K27ac-defined regulatory elements active during human and mouse corticogenesis to identify enhancers that were likely active in the ancient mammalia...
متن کاملThe Enhancer Landscape during Early Neocortical Development Reveals Patterns of Dense Regulation and Co-option
Genetic studies have identified a core set of transcription factors and target genes that control the development of the neocortex, the region of the human brain responsible for higher cognition. The specific regulatory interactions between these factors, many key upstream and downstream genes, and the enhancers that mediate all these interactions remain mostly uncharacterized. We perform p300 ...
متن کامل