On Supergraphs Satisfying CMSO Properties

نویسنده

  • Mateus de Oliveira Oliveira
چکیده

Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function f , there is an algorithm A that takes as input a CMSO sentence φ, a positive integer t, and a connected graph G of maximum degree at most ∆, and determines, in time f(|φ|, t) · 2O(∆·t) · |G|O(t), whether G has a supergraph G′ of treewidth at most t such that G′ |= φ. The algorithmic metatheorem described above sheds new light on certain unresolved questions within the framework of graph completion algorithms. In particular, using this metatheorem, we provide an explicit algorithm that determines, in time f(d) ·2O(∆·d) · |G|O(d), whether a connected graph of maximum degree ∆ has a planar supergraph of diameter at most d. Additionally, we show that for each fixed k, the problem of determining whether G has an k-outerplanar supergraph of diameter at most d is strongly uniformly fixed parameter tractable with respect to the parameter d. This result can be generalized in two directions. First, the diameter parameter can be replaced by any contraction-closed effectively CMSO-definable parameter p. Examples of such parameters are vertex-cover number, dominating number, and many other contraction-bidimensional parameters. In the second direction, the planarity requirement can be relaxed to bounded genus, and more generally, to bounded local treewidth. 1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.4 Mathematical Logic and Formal Languages

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing CMSO Model Checking to Highly Connected Graphs

Given a Counting Monadic Second Order (CMSO) sentence ψ, the CMSO[ψ] problem is defined as follows. The input to CMSO[ψ] is a graph G, and the objective is to determine whether G |= ψ. Our main theorem states that for every CMSO sentence ψ, if CMSO[ψ] is solvable in polynomial time on “globally highly connected graphs”, then CMSO[ψ] is solvable in polynomial time (on general graphs). We demonst...

متن کامل

Order-Invariant MSO is Stronger than Counting MSO in the Finite

We compare the expressiveness of two extensions of monadic second-order logic (MSO) over the class of finite structures. The first, counting monadic second-order logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the expression of queries like “the number of elements in the structure is even”. The second extension allows the use of an additional binary predicate, n...

متن کامل

Energy landscapes, supergraphs, and "folding funnels" in spin systems.

Dynamical connectivity graphs, which describe dynamical transition rates between local energy minima of a system, can be displayed against the background of a disconnectivity graph which represents the energy landscape of the system. The resulting supergraph describes both dynamics and statics of the system in a unified coarse-grained sense. We give examples of the supergraphs for several two-d...

متن کامل

Some Graph Polynomials of the Power Graph and its Supergraphs

‎In this paper‎, ‎exact formulas for the dependence‎, ‎independence‎, ‎vertex cover and clique polynomials of the power graph and its‎ ‎supergraphs for certain finite groups are presented‎.

متن کامل

Automata and Logics for Unranked and Unordered Trees

In this paper, we consider the monadic second order logic (MSO) and two of its extensions, namely Counting MSO (CMSO) and Presburger MSO (PMSO), interpreted over unranked and unordered trees. We survey classes of tree automata introduced for the logics PMSO and CMSO as well as other related formalisms; we gather results from the literature and sometimes clarify or fill the remaining gaps betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017