The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration.

نویسندگان

  • Simone Di Giovanni
  • Chad D Knights
  • Mahadev Rao
  • Alexander Yakovlev
  • Jeannette Beers
  • Jason Catania
  • Maria Laura Avantaggiati
  • Alan I Faden
چکیده

Axon regeneration is substantially regulated by gene expression and cytoskeleton remodeling. Here we show that the tumor suppressor protein p53 is required for neurite outgrowth in cultured cells including primary neurons as well as for axonal regeneration in mice. These effects are mediated by two newly identified p53 transcriptional targets, the actin-binding protein Coronin 1b and the GTPase Rab13, both of which associate with the cytoskeleton and regulate neurite outgrowth. We also demonstrate that acetylation of lysine 320 (K320) of p53 is specifically involved in the promotion of neurite outgrowth and in the regulation of the expression of Coronin 1b and Rab13. Thus, in addition to its recognized role in neuronal apoptosis, surprisingly, p53 is required for neurite outgrowth and axonal regeneration, likely through a different post-translational pathway. These observations may suggest a novel therapeutic target for promoting regenerative responses following peripheral or central nervous system injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway

SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing a protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is required for neurite outgrowth and regeneration. Here we present evidence that SCYL1BP1 inhibits nerve growth factor-mediated neurite outgrowt...

متن کامل

Kinesin-1–powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons

Understanding the mechanism underlying axon regeneration is of great practical importance for developing therapeutic treatment for traumatic brain and spinal cord injuries. Dramatic cytoskeleton reorganization occurs at the injury site, and microtubules have been implicated in the regeneration process. Previously we demonstrated that microtubule sliding by conventional kinesin (kinesin-1) is re...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition.

Myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs) contribute to failed regeneration after neuronal injury. MAIs and CSPGs stimulate intracellular signals including the activation of RhoA and Rho kinase to block axonal extension through targeted modifications to the cytoskeleton. RhoA and ROCK are promising targets for therapeutic intervention to promote CNS repai...

متن کامل

Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model.

Recent studies have proposed that neurite outgrowth is influenced by specific nerve cell surface gangliosides, which are sialic acid-containing glycosphingolipids highly enriched in the mammalian nervous system. For example, the endogenous lectin, myelin-associated glycoprotein (MAG), is reported to bind to axonal gangliosides (GD1a and GT1b) to inhibit neurite outgrowth. Clustering of ganglios...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 2006