DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer's disease.
نویسندگان
چکیده
Genes located on chromosome 21, over-expressed in Down syndrome (DS) and Alzheimer's disease (AD) and which regulate vesicle trafficking, are strong candidates for involvement in AD neuropathology. Regulator of calcineurin activity 1 (RCAN1) is one such gene. We have generated mutant mice in which RCAN1 is either over-expressed (RCAN1(ox)) or ablated (Rcan1-/-) and examined whether exocytosis from chromaffin cells, a classic cellular model of neuronal exocytosis, is altered using carbon fibre amperometry. We find that Rcan1 regulates the number of vesicles undergoing exocytosis and the speed at which the vesicle fusion pore opens and closes. Cells from both Rcan1-/- and RCAN1(ox) mice display reduced levels of exocytosis. Changes in single-vesicle fusion kinetics are also evident resulting in the less catecholamine released per vesicle with increasing Rcan1 expression. Acute calcineurin inhibition did not replicate the effect of RCAN1 overexpression. These changes are not due to alterations in Ca2+ entry or the readily releasable vesicle pool size. Thus, we illustrate a novel regulator of vesicle exocytosis, Rcan1, which influences both exocytotic rate and vesicle fusion kinetics. If Rcan1 functions similarly in neurons then overexpression of this protein, as occurs in DS and AD brains, will reduce both the number of synaptic vesicles undergoing exocytosis and the amount of neurotransmitter released per fusion event. This has direct implications for the pathogenesis of these diseases as sufficient levels of neurotransmission are required for synaptic maintenance and the prevention of neurodegeneration and vesicle trafficking defects are the earliest hallmark of AD neuropathology.
منابع مشابه
Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome.
UNLABELLED Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functiona...
متن کاملThe Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling.
Regulator of calcineurin 1 (RCAN1/MCIP1/DSCR1) regulates the calmodulin-dependent phosphatase calcineurin. Because it is located on human chromosome 21, RCAN1 has been postulated to contribute to mental retardation in Down syndrome and has been reported to be associated with neuronal degeneration in Alzheimer's disease. The studies herein are the first to assess the role of RCAN1 in memory and ...
متن کاملDSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways.
Down syndrome is one of the major causes of mental retardation and congenital heart malformations. Other common clinical features of Down syndrome include gastrointestinal anomalies, immune system defects and Alzheimer's disease pathological and neurochemical changes. The most likely consequence of the presence of three copies of chromosome 21 is the overexpression of its resident genes, a fact...
متن کاملNebula/DSCR1 Upregulation Delays Neurodegeneration and Protects against APP-Induced Axonal Transport Defects by Restoring Calcineurin and GSK-3β Signaling
Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated...
متن کاملThe calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.
Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2008