Extracting nonlinear features for multispectral images by FCMC and KPCA

نویسندگان

  • Zhan-Li Sun
  • De-Shuang Huang
  • Yiu-ming Cheung
چکیده

Classification is a very important task for scene interpretation and other applications of multispectral images. Feature extraction is a key step for classification. By extracting more nonlinear features than corresponding number of linear features in original feature space, classification accuracy for multispectral images can be improved greatly. Therefore, in this paper, an approach based on the fuzzy c-means clustering (FCMC) and kernel principal component analysis (KPCA) is proposed to resolve the problem of multispectral images. The main contribution of this paper is to provide a good preprocessed method for classifying these images. Finally, some experimental results demonstrate that our proposed method is effective and efficient for analyzing the multispectral images.  2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Analog Circuit Intelligent Fault Diagnosis Based on Greedy Kpca and One-against-rest Svm Approach

Fault diagnosis of analog circuits is essential for guaranteeing the reliability and maintainability of electronic systems. A novel analog circuit fault diagnosis approach based on greedy kernel principal component analysis (KPCA) and one-against-rest support vector machine (OARSVM) is proposed in this paper. In order to obtain a successful fault classifier, eliminating noise and extracting fau...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

Face Recognition Algorithm Based on Kernel Collaborative Representation

Aiming at solving the problems of occlusion and illumination in face recognition, a new method of face recognition based on Kernel Principal Components Analysis (KPCA) and Collaborative Representation Classifier (CRC) is developed. The KPCA can obtain effective discriminative information and reduce the feature dimensions by extracting face’s nonlinear structures features, the decisive factor. C...

متن کامل

Face Recognition Using Cca on Nonlinear Features

The face recognition (FR) system plays a vital role in commercial & law enforcement applications. Image resolution is an important factor affecting face recognition performance. The performance of face recognition system degrades by low resolution of face images. To address this problem, a super resolution (SR) method was introduced by Hua Huang and Huiting He [7], which uses Canonical correlat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005