Chemotherapeutic drug-induced ABCG2 promoter demethylation as a novel mechanism of acquired multidrug resistance.

نویسندگان

  • Eran E Bram
  • Michal Stark
  • Shachar Raz
  • Yehuda G Assaraf
چکیده

ABCG2 is an efflux transporter conferring multidrug resistance (MDR) on cancer cells. However, the initial molecular events leading to its up-regulation in MDR tumor cells are poorly understood. Herein, we explored the impact of drug treatment on the methylation status of the ABCG2 promoter and consequent reactivation of ABCG2 gene expression in parental tumor cell lines and their MDR sublines. We demonstrate that ABCG2 promoter methylation is common in T-cell acute lymphoblastic leukemia (T-ALL) lines, also present in primary T-ALL lymphoblast specimens. Furthermore, drug selection with sulfasalazine and topotecan induced a complete demethylation of the ABCG2 promoter in the T-ALL and ovarian carcinoma model cell lines CCRF-CEM and IGROV1, respectively. This resulted in a dramatic induction of ABCG2 messenger RNA levels (235- and 743-fold, respectively) and consequent acquisition of an ABCG2-dependent MDR phenotype. Quantitative genomic polymerase chain reaction and ABCG2 promoter-luciferase reporter assay did not reveal ABCG2 gene amplification or differential transcriptional trans-activation, which could account for ABCG2 up-regulation in these MDR cells. Remarkably, mimicking cytotoxic bolus drug treatment through 12- to 24-hour pulse exposure of ABCG2-silenced leukemia cells, to clinically relevant concentrations of the chemotherapeutic agents daunorubicin and mitoxantrone, resulted in a marked transcriptional up-regulation of ABCG2. Our findings establish that antitumor drug-induced epigenetic reactivation of ABCG2 gene expression in cancer cells is an early molecular event leading to MDR. These findings have important implications for the emergence, clonal selection, and expansion of malignant cells with the MDR phenotype during chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression

Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and...

متن کامل

Correlation between the promoter methylation status of ATP-binding cassette sub-family G member 2 and drug sensitivity in colorectal cancer cell lines.

Resistance to chemotherapeutic agents has been considered as a major reason for the high incidence rate of recurrence and metastasis suffered by colorectal cancer (CRC) patients. ATP-binding cassette sub-family G member 2 (ABCG2) is involved in drug resistance. DNA methylation of the ABCG2 promoter site has a significant influence on the regulation of epigenetic gene expression. In the present ...

متن کامل

Multidrug resistance and cancer: the role of the human ABC transporter ABCG2.

A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional chemotherapy, a phenomenon called multidrug resistance. This broad-based resistance results in large part, but not solely, from overexpression of members of the ATP-binding cassette (ABC) superfamily of membrane transporters, including P-glycoprotein, various members of the multidrug resist...

متن کامل

Xanthines down-regulate the drug transporter ABCG2 and reverse multidrug resistance.

ABCG2 is an ATP-binding-cassette (ABC) transporter that confers multidrug resistance (MDR) to tumor cells by extruding a broad variety of chemotherapeutic agents, ultimately leading to failure of cancer therapy. Thus, the down-regulation of ABCG2 expression and/or function has been proposed as part of a regimen to improve cancer therapeutic efficacy. In this study, we found that a group of xant...

متن کامل

ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance.

Resistance to chemotherapeutic agents is the main reason for treatment failure in patients with cancer. The primary mechanism of multidrug resistance (MDR) is the overexpression of drug efflux transporters, including ATP‑binding cassette transporter G2 (ABCG2). To the best of our knowledge, the MDR mechanisms of esophageal cancer have not been described. An adriamycin (ADM)-resistant subline, Ec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neoplasia

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2009