Dual-Specificity Anti-sigma Factor Reinforces Control of Cell-Type Specific Gene Expression in Bacillus subtilis
نویسندگان
چکیده
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.
منابع مشابه
Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis.
During sporulation in Bacillus subtilis an asymmetric cell division gives rise to unequal progeny called the prepore and the mother cell. Gene expression in the prespore is initiated by cell-specific activation of the transcription factor sigma(F). Three proteins participate in the regulation of sigma(F) activity. The first, SpoIIAB, is an inhibitor of sigma(F), that is, an anti-sigma factor. S...
متن کاملThe sigma factors of Bacillus subtilis.
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma facto...
متن کاملRole of the anti-sigma factor SpoIIAB in regulation of sigmaG during Bacillus subtilis sporulation.
RNA polymerase sigma factor sigma(F) initiates the prespore-specific program of gene expression during Bacillus subtilis sporulation. sigma(F) governs transcription of spoIIIG, encoding the late prespore-specific regulator sigma(G). However, transcription of spoIIIG is delayed relative to other genes under the control of sigma(F), and after synthesis, sigma(G) is initially kept in an inactive f...
متن کاملEstablishment of prespore-specific gene expression in Bacillus subtilis: localization of SpoIIE phosphatase and initiation of compartment-specific proteolysis.
Immunofluorescence microscopy was used to study the establishment of compartment-specific transcription during sporulation in Bacillus subtilis. Analysis of the distribution of the anti-anti-sigma factor, SpoIIAA, in a variety of mutant backgrounds supports a model in which the SpoIIE phosphatase, which activates SpoIIAA by dephosphorylation, is sequestered onto the prespore face of the asymmet...
متن کاملAnalysis of the role of prespore gene expression in the compartmentalization of mother cell-specific gene expression during sporulation of Bacillus subtilis.
A hallmark of sporulation of Bacillus subtilis is the formation of two distinct cells by an asymmetric division. The development programs in these two cells involve the compartmentalized activities of sigma E in the larger mother cell and of sigma F in the smaller prespore. Activation of sigma E requires expression of the sigma F-directed gene spoIIR. By immunofluorescence microscopy of a strai...
متن کامل