Non-Associative Geometry of Quantum Tori
نویسنده
چکیده
We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a “principal bundle” construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.
منابع مشابه
Hom-quantum Groups Ii: Cobraided Hom-bialgebras and Hom-quantum Geometry
A class of non-associative and non-coassociative generalizations of cobraided bialgebras, called cobraided Hom-bialgebras, is introduced. The non-(co)associativity in a cobraided Hom-bialgebra is controlled by a twisting map. Several methods for constructing cobraided Hombialgebras are given. In particular, Hom-type generalizations of FRT quantum groups, including quantum matrices and related q...
متن کاملA Survey on Morita Equivalence of Quantum Tori
This paper is a survey on the problem of classifying non-commutative tori up to Morita equivalence and will review the necessary background and discuss some results concerning this question (see [28],[29] and [22]). The concept of Morita equivalence was first introduced in operator algebras by M.Rieffel in the 1970’s, in connection with the problem of characterizing representations of locally c...
متن کاملQuantum Geometry and Quantum Mechanics of Integrable Systems
Quantum integrable systems and their classical counterparts are considered. We show that the symplectic structure and invariant tori of the classical system can be deformed by a quantization parameter ~ to produce a new (classical) integrable system. The new tori selected by the ~-equidistance rule represent the spectrum of the quantum system up to O(~∞) and are invariant under quantum dynamics...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملModuli of complex curves and noncommutative geometry I: classification of complex and quantum tori
This paper is a brief account of the moduli of complex curves from the perspective of noncommutative geometry. We focus on problems of Riemann surface theory, which can be settled using K-groups of a noncommutative C∗-algebra. On this way, we prove “generic” arithmeticity of the mapping class group and study correspondences between complex and noncommutative tori.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016