Nominal Confluence Tool
نویسندگان
چکیده
Nominal rewriting is a framework of higher-order rewriting introduced in (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007). Recently, (Suzuki et al., 2015) revisited confluence of nominal rewriting in the light of feasibility. We report on an implementation of a confluence tool for (non-closed) nominal rewriting, based on (Suzuki et al., 2015) and succeeding studies.
منابع مشابه
Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems
Nominal rewriting has been introduced as an extension of first-order term rewriting by a binding mechanism based on the nominal approach. In this paper, we extend Huet’s parallel closure theorem and its generalisation on confluence of left-linear term rewriting systems to the case of nominal rewriting. The proof of the theorem follows a previous inductive confluence proof for orthogonal uniform...
متن کاملConfluence of Orthogonal Nominal Rewriting Systems Revisited
Nominal rewriting systems (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007) have been introduced as a new framework of higher-order rewriting systems based on the nominal approach (Gabbay & Pitts, 2002; Pitts, 2003), which deals with variable binding via permutations and freshness conditions on atoms. Confluence of orthogonal nominal rewriting systems has been shown in (Fernández & G...
متن کاملChecking Overlaps of Nominal Rewriting Rules
Nominal rewriting generalises first-order rewriting by providing support for the specification of binding operators. In this paper, we give sufficient conditions for (local) confluence of closed nominal rewriting theories, based on the analysis of rule overlaps. More precisely, we show that closed nominal rewriting rules where all proper critical pairs are joinable are locally confluent. We als...
متن کاملCritical Pair Analysis in Nominal Rewriting
Nominal rewriting (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007) is a framework that extends first-order term rewriting by a binding mechanism based on the nominal approach (Gabbay & Pitts, 2002; Pitts, 2003). In this paper, we investigate confluence properties of nominal rewriting, following the study of orthogonal systems in (Suzuki et al., 2015), but here we treat systems in wh...
متن کاملNominal Rewriting ? Maribel Fernández and Murdoch
Nominal rewriting is based on the observation that if we add support for alphaequivalence to first-order syntax using the nominal-set approach, then systems with binding, including higher-order reduction schemes such as lambda-calculus betareduction, can be smoothly represented. Nominal rewriting maintains a strict distinction between variables of the objectlanguage (atoms) and of the meta-lang...
متن کامل