Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development.

نویسندگان

  • Patricia G Greciano
  • Clara Goday
چکیده

An outstanding example of programmed chromosome elimination and genomic imprinting is found in sciarid flies (Diptera, Sciaridae), where whole chromosomes of paternal origin are selectively discarded from the genome during development. In early germ cells a single paternal X chromosome is eliminated in embryos of both sexes and in male meiotic cells the whole paternal complement is discarded. In sciarids, differential acetylation of histones H3 and H4 occurs between chromosomes of different parental origin, both in early germ nuclei and in male meiotic cells (Goday and Ruiz, 2002). We here investigated histone methylation modifications between chromosomes in germline cells of Sciara ocellaris. In early germ nuclei, maternal chromosomes show high levels of di- and trimethylated histone H3 at Lys4, whereas this histone modification is not detected in paternal chromosomes. In male meiosis, only the eliminated paternal chromosomes exhibit high levels of di- and trimethylated histones H3 at Lys4 and dimethylated H4 at Lys20. In early germ nuclei, RNA polymerase II associates to maternally-derived chromosomes but lacks phosphorylation of the C-terminal domain on Ser2. We found that histone H3 methylation at Lys4 does not correlate with transcriptional activity in early Sciara germline nuclei. The results support the conclusion that specific covalent chromatin modifications are involved in the imprinted behaviour of germline chromosomes in Sciara.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies.

A classic example of chromosome elimination and genomic imprinting is found in sciarid flies (Diptera. Sciaridae), where whole chromosomes of exclusively paternal origin are discarded from the genome at different developmental stages. Two types of chromosome elimination event occur in the germline. In embryos of both sexes, the extrusion of a single paternal X chromosome occurs in early germ nu...

متن کامل

Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming.

The fate and function of epigenetic marks during the germline-to-embryo transition is a key issue in developmental biology, with relevance to stem cell programming and transgenerational inheritance. In zebrafish, DNA methylation patterns are programmed in transcriptionally quiescent cleavage embryos; paternally inherited patterns are maintained, whereas maternal patterns are reprogrammed to mat...

متن کامل

Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies.

In sciarid flies (Diptera, Sciaridae), one or two paternally derived X chromosomes are discarded from the soma at early cleavages to determine the sex of the embryo (XX, females; X0, males). X chromosome(s) elimination is achieved by an abnormal anaphase segregation so that X sister chromatids do not reach the poles and are not included in the daughter nuclei. A cis-acting locus (CE) within the...

متن کامل

Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming

The fate and function of epigenetic marks during the germline-to-embryo transition is a key issue in developmental biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNA methylation (DNAme) patterns are programmed in transcriptionally-quiescent cleavage embryos; remarkably, paternally-inherited patterns are maintained, whereas maternal patterns ar...

متن کامل

Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae.

Histone methylation is known to be associated with both transcriptionally active and repressive chromatin states. Recent studies have identified SET domain-containing proteins such as SUV39H1 and Clr4 as mediators of H3 lysine 9 (Lys9) methylation and heterochromatin formation. Interestingly, H3 Lys9 methylation is not observed from bulk histones isolated from asynchronous populations of Saccha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 119 Pt 22  شماره 

صفحات  -

تاریخ انتشار 2006