Symplastic Transfer of Fluorescent Dyes from Mesophyll to Sieve Tube in Stripped Leaf Tissue and Partly Isolated Minor Veins of Commelina benghalensis.

نویسندگان

  • W J van Kesteren
  • C van der Schoot
  • A J van Bel
چکیده

We have stripped small (3 x 3 mm) fields of the upper and the opposite lower epidermis of Commelina benghalensis leaves. Pectinase treatment of the resulting chlorenchyma windows produced free-lying viable minor veins with small lumps of mesophyll cells attached. These veins were still connected with the intact remainder of the leaf. Fluorescent dyes were injected into mesophyll cells or mestome sheath cells. Continuous following of the dye from the moment of injection and use of the simple vein system allowed an unhindered and precise assessment of the cell-to-cell route of dye transfer. Disodium fluorescein and Lucifer Yellow CH injected into mesophyll or mestome sheath cells readily moved to the sieve tube. This symplastic dye transfer from mesophyll to sieve tube was also observed after injection into unmacerated stripped leaf tissue. The displacement of fluorescent dyes substantiates a symplastic continuity between mesophyll and sieve tube and therefore supports the possibility of symplastic phloem loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplastic Phloem Loading in Poplar1[W][OPEN]

Sap is driven through phloem sieve tubes by an osmotically generated pressure gradient between source and sink tissues. In many plants, source pressure results from thermodynamically active loading in which energy is used to transfer sucrose (Suc) from mesophyll cells to the phloem of leaf minor veins against a concentration gradient. However, in some species, almost all trees, correlative evid...

متن کامل

Foliar phloem infrastructure in support of photosynthesis

Acclimatory adjustments of foliar minor loading veins in response to growth at different temperatures and light intensities are evaluated. These adjustments are related to their role in providing infrastructure for the export of photosynthetic products as a prerequisite for full acclimation of photosynthesis to the respective environmental conditions. Among winter-active apoplastic loaders, hig...

متن کامل

Specialized "transfer Cells" in Minor Veins of Leaves and Their Possible Significance in Phloem Translocation

Translocation of organic substances in the phloem of higher plants has been investigated for almost a century, but remarkably little is known of the mechanisms whereby assimilates are drained from the mesophyll of photosynthesizing leaves and transferred to sieve tubes in the leaf veins. Certain modified companion cells (3, 5-7) associated with the sieve tubes of minor veins have long been susp...

متن کامل

Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues.

Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H...

متن کامل

Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with a Fluorescent Virus.

Using noninvasive imaging techniques, we compared phloem unloading of the membrane-impermeant, fluorescent solute carboxyfluorescein (CF) with that of potato virus X expressing the gene for the green fluorescent protein. Although systemic virus transport took considerably longer to occur than did CF transport, unloading of both solute and virus occurred predominantly from the class III vein net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 1988