Transport-limited water splitting at ion-selective interfaces during concentration polarization.
نویسندگان
چکیده
We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.
منابع مشابه
History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02195a Click here for additional data file.
The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in highdensity energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynami...
متن کاملEffect of concentration polarization on permselectivity.
In this paper, the variation of permselectivity in the course of concentration polarization is systematically analyzed for a three-layer membrane system consisting of a nonperfectly permselective ion exchange membrane, homogeneous or heterogeneous, flanked by two diffusion layers of a binary univalent electrolyte. For a heterogeneous membrane, an ionic transport model is proposed, which is amen...
متن کاملAn electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
The solution transport losses in a one-dimensional solar-driven water-splitting cell that operates in either concentrated acid, dilute acid, or buffered near-neutral pH electrolytes have been evaluated using a mathematical model that accounts for diffusion, migration and convective transport, as well as for bulk electrochemical reactions in the electrolyte. The Ohmic resistance loss, the Nernst...
متن کاملNonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices
The integration of micro/nanofluidic devices led to many interesting phenomena and one of the most important and complex phenomenon among them is concentration polarization. In this paper, we report new physical insights in micro/nanofluidic interface devices on the application of ac and dc electric fields. By performing detailed numerical simulations based on the coupled Poisson, Nernst–Planck...
متن کاملDesalination by Electrodialysis Using a Stack of Patterned IonSelective Hydrogels on a Microfluidic Device
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 8685 wileyonlinelibrary.com anode, while the cations migrate toward the cathode. However, anions and cations will be blocked from moving through the CEM and AEM respectively, resulting in the formation of alternating depleted and enriched flow streams. As the applied electric field strength is increased, the ion transport rate and therefore the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014