HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part II: effects on susceptibility to ventricular fibrillation induced by myocardial ischemia in conscious dogs.
نویسندگان
چکیده
The activation of the ATP-sensitive potassium channel (KATP) during myocardial ischemia leads to potassium efflux, reductions in action potential duration and the formation of ventricular fibrillation (VF). Drugs that inactivate KATP should prevent these changes and thereby prevent VF. However, most KATP antagonists also alter pancreatic channels, which promote insulin release and hypoglycemia. Recently, a cardioselective KATP antagonist, HMR 1883, has been developed that may offer cardioprotection without the untoward side effects of existing compounds. Therefore, VF was induced in 13 mongrel dogs with healed myocardial infarctions by a 2-min coronary artery occlusion during the last minute of a submaximal exercise test. On subsequent days, the exercise-plus-ischemia test was repeated after pretreatment with HMR 1883 (3.0 mg/kg i.v., n = 13) or glibenclamide (1.0 mg/kg i.v., n = 7). HMR 1883 (P < .001) and glibenclamide (P < .01) prevented VF in 11 of 13 and 6 of 7 animals, respectively. Glibenclamide, but not HMR 1883, elicited increases in plasma insulin and reductions in blood glucose. Glibenclamide also reduced (P < .01) both mean coronary blood flow and left ventricular dP/dt maximum as well as the reactive hyperemia induced by 15-sec coronary occlusions (-30.3 +/- 11%), whereas HMR 1883 did not alter this increase in coronary flow (-3.0 +/- 4.7%). Finally, myocardial ischemia (n = 10) significantly (P < .01) reduced refractory period (control, 121 +/- 2 msec; occlusion, 115 +/- 2 msec), which was prevented by either glibenclamide or HMR 1883. Thus, the cardioselective KATP antagonist HMR 1883 can prevent ischemically induced reductions in refractory period and VF without major hemodynamic effects or alterations in blood glucose levels. These data further suggest that the activation of KATPs may play a particularly important role in both the reductions in refractory period and lethal arrhythmia formation associated with myocardial ischemia.
منابع مشابه
ATP-sensitive potassium channel blocker HMR 1883 reduces mortality and ischemia-associated electrocardiographic changes in pigs with coronary occlusion.
ATP-sensitive potassium (K(ATP)) channels are activated during myocardial ischemia. The ensuing potassium efflux leads to a shortening of the action potential duration and depolarization of the membrane by accumulation of extracellular potassium favoring the development of reentrant arrhythmias, including ventricular fibrillation. The sulfonylthiourea HMR 1883 was designed as a cardioselective ...
متن کاملEffects of a Novel Cardioselective ATP-Sensitive Potassium Channel Antagonist, 1-[[5-[2-(5-Chloro-o-anisamido)ethyl]- - methoxyethoxyphenyl]sulfonyl]-3-methylthiourea, Sodium Salt (HMR 1402), on Susceptibility to Ventricular Fibrillation Induced by Myocardial Ischemia: In Vitro and in Vivo Studies
In the present study, a novel sulfonylthiourea, 1-[[5-[2-(5chloro-o-anisamido)ethyl]-methoxyethoxyphenyl]sulfonyl]-3methylthiourea, sodium salt (HMR 1402), was investigated using in vitro and in vivo systems. HMR 1402 inhibited rilmakaliminduced currents in rat and guinea pig myocytes (IC50 60 and 509 nM, respectively). Hypoxia-induced shortening of action potential duration at 90% repolarizati...
متن کاملThe effects of ATP-dependent potassium channel opener; pinacidil, and blocker; glibenclamide, on the ischemia induced arrhythmia in partial and complete ligation of coronary artery in rats
Objective(s): Electrical inhomogeneity between ischemic and non ischemic myocardium is the basis of arrhythmia which occurs following coronary artery occlusion. The leakage of potassium from the ischemic region to the non ischemic region is very effective in the generation of these arrhythmias. The aim of this study is to research the effect of ATP-dependent potassium (KATP) channel blocker (gl...
متن کاملCardiomyocyte mitochondrial KATP channels participate in the antiarrhythmic and antiinfarct effects of KATP activators during ischemia and reperfusion in an intact anesthetized rabbit model.
Recent evidence suggests that the mitochondrial K(ATP) channels may be involved as a subcellular mediator in cardioprotection afforded by ischemic and pharmacological preconditioning by K(ATP) activators. The present study investigated the effects of administration of non-hypotensive doses of ATP-sensitive K(+) channel (K(ATP)) openers, nicorandil (NIC) and pinacidil (PIN), and specific blocker...
متن کاملDifferential effects of sarcolemmal and mitochondrial K(ATP) channels activated by 17 beta-estradiol on reperfusion arrhythmias and infarct sizes in canine hearts.
We have demonstrated the effects of estrogen on modulation of ATP-sensitive K(+) channels; however, the subcellular location of these channels is unknown. The purpose of the present study was to investigate the role of the sarcolemmal and mitochondrial ATP-sensitive K(+) channels in a canine model of myocardial infarction after stimulation with 17 beta-estradiol. Anesthetized dogs were subjecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 286 3 شماره
صفحات -
تاریخ انتشار 1998