Allosteric control of Zymomonas mobilis glucose-6-phosphate dehydrogenase by phosphoenolpyruvate.

نویسنده

  • R K Scopes
چکیده

The second enzyme of the Entner-Doudoroff glycolytic pathway in Zymomonas mobilis, glucose-6-phosphate dehydrogenase, has been found to be inhibited by phosphoenolpyruvate (PEP). In the presence of PEP levels in the micromolar range, the response of the enzyme to glucose 6-phosphate concentration becomes sigmoidal, with a Hill coefficient up to 2. At low ionic strength in the absence of PEP, the response to glucose 6-phosphate concentration is Michaelis-Menten, but at physiological ionic strength and pH, a Hill coefficient of 1.3 to 1.4 was found even in the absence of PEP. Km values for NAD+ and NADP+ are also ionic-strength-dependent, increasing rapidly as salt concentration increases. Some sigmoidicity was also observed for NAD+ in the presence of PEP at low glucose 6-phosphate concentrations. The results can be interpreted in a Monod-Wyman-Changeux model, in which glucose 6-phosphate binds principally to the R-state, PEP to the T-state, and NAD+ to both states. These observations are clearly physiologically significant, and provide an explanation for the control of the balance between glycolytic throughput and ATP consumption in Z. mobilis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycolytic enzymes in Zymomonas mobilis.

Raps, Shirley (University of Illinois, Urbana) and R. D. DeMoss. Glycolytic enzymes in Zymomonas mobilis. J. Bacteriol. 84:115-118. 1962-An enzyme extract of Zymomonas mobilis (Pseudomonas lindneri) was capable of fermenting glucose-6-phosphate to CO(2) and ethanol. The extract was found to contain phosphohexoisomerase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, but no demonstrable...

متن کامل

Genetic and physiological analysis of the lethal effect of L-(+)-lactate dehydrogenase deficiency in Streptococcus mutans: complementation by alcohol dehydrogenase from Zymomonas mobilis.

CH4ts is a previously isolated recombinant mutant of Streptococcus mutans NG8 which produces a thermolabile L-(+)-lactate dehydrogenase (LDH) activity. It does not grow at 42 degrees C under a variety of cultivation conditions. In this study, we show that a batch culture of CH4ts shifted from 30 to 42 degrees C underwent rapid cessation of growth and accelerated cell death. The mutant grew at 4...

متن کامل

Production of Acetaldehyde by Zymomonas mobilis.

Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, th...

متن کامل

Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures.

Zymomonas mobilis has been metabolically engineered to broaden its substrate utilization range to include D-xylose and L-arabinose. Both genomically integrated and plasmid-bearing Z. mobilis strains that are capable of fermenting the pentose D-xylose have been created by incorporating four genes: two genes encoding xylose utilization metabolic enzymes (xylA/xylB) and two genes encoding pentose ...

متن کامل

Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism.

The active, yet energetically inefficient electron transport chain of the ethanologenic bacterium Zymomonas mobilis could be used in metabolic engineering for redox-balancing purposes during synthesis of certain products. Although several reconstructions of Z. mobilis metabolism have been published, important aspects of redox balance and aerobic catabolism have not previously been considered. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 326 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1997