Phonon Engineering in Hetero- and Nanostructures
نویسندگان
چکیده
Phonons, i.e., quanta of lattice vibrations, manifest themselves practically in all electrical, thermal, optical, and noise phenomena in semiconductors and other material systems. Reduction of the size of electronic devices below the acoustic phonon mean free path creates a new situation for the phonons propagation and interaction. From one side, it may complicate heat removal from the downscaled devices. From the other side, it opens up an opportunity for engineering phonon spectrum in nanostructured materials, and achieving enhanced operation of nanoscale devices. This chapter reviews the development of the nanoscale phonon engineering concept and discusses possible device applications. The focus of this review is on tuning the phonon spectrum in the acoustically mismatched nanoand heterostructures in order to change the ability of semiconductors to conduct heat or electric current. New approaches for the electron–phonon scattering rates suppression and improvement of the carrier mobility as well as for formation of the phonon stop-bands are discussed. The phonon engineering concept can be potentially as powerful as the band gap engineering, which led to some ground-breaking developments in the electronics.
منابع مشابه
Engineering thermophysical properties of micro - and nanostructures ✩
Engineered microand nanostructures may possess superb properties unattainable in nature. Examples are the photonic crystals for electromagnetic waves and quantum wells for electronic waves. In this article, we focus on engineering thermophysical properties of microand nanostructures. A brief historical perspective is provided on the motivations to engineer the properties of matters, followed by...
متن کاملNanophononics: phonon engineering in nanostructures and nanodevices.
Phonons, i.e., quanta of lattice vibrations, manifest themselves practically in all electrical, thermal and optical phenomena in semiconductors and other material systems. Reduction of the size of electronic devices below the acoustic phonon mean free path creates a new situation for phonon propagation and interaction. From one side, it complicates heat removal from the downscaled devices. From...
متن کاملPhononics in Low-dimensions: Engineering Phonons in Nanostructures and Graphene
Phonons – quanta of crystal lattice vibrations – reveal themselves in all electrical, thermal and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related properties of materials for specific applications. A recent advent of graphene and quasi two-dimensional materials increased the possibilities for controlled modification of ...
متن کاملImpressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance
Infrared photo detectors have vast and promising applications in military,industrial and other fields. In this paper, we present a method for improving theperformance of an infrared photodetector based on an InSb substance. To achieve goodperformance at high temperatures, thermal noise and intrusive currents should bereduced. For this purpose, a five-layer hetero structu...
متن کاملPii: S0921-5093(00)00999-0
Solid-state energy conversion technologies such as thermoelectric and thermionic refrigeration and power generation require materials with low thermal conductivity but good electrical conductivity, which are difficult to realize in bulk semiconductors. Nanostructures such as quantum wires and quantum wells provide alternative approaches to improve the solid-state energy conversion efficiency th...
متن کامل