Modulation of steroidogenesis by chloride ions in MA-10 mouse tumor Leydig cells: roles of calcium, protein synthesis, and the steroidogenic acute regulatory protein.

نویسندگان

  • H I Ramnath
  • S Peterson
  • A E Michael
  • D M Stocco
  • B A Cooke
چکیده

It has previously been shown that omission of extracellular chloride ions during culture of rat Leydig cells markedly enhances LH-stimulated steroidogenesis. In the present study, the mechanisms of the effect of chloride omission on (Bu)2cAMP-stimulated steroidogenesis in MA-10 mouse Leydig tumor cells have been investigated. It was found that chloride omission enhanced progesterone production 2- and 4-fold in the absence and presence, respectively, of submaximally stimulating levels of (Bu)2cAMP (0.1 mM) during incubation for 2 h. This enhancement of stimulation increased continuously with time, because after 6 h, (Bu)2cAMP-stimulated progesterone production was 15-fold higher in the absence of chloride. These effects were not found in the presence of maximum stimulating levels of (Bu)2cAMP (1 mM). Omission of calcium from the incubation medium decreased (Bu)2cAMP-stimulated progesterone production by over 70% in the presence and absence of chloride. Progesterone production was still enhanced by the omission of chloride in the absence of calcium, but the effects were less marked than those in the presence of calcium. Addition of the protein synthesis inhibitor, cycloheximide, completely inhibited (Bu)2cAMP-stimulated, but not basal, steroidogenesis in the absence and presence of chloride ions during 2- and 6-h incubation. Total protein synthesis (measured by the incorporation of [3H]methionine) was 4-fold higher in cells incubated in chloride-free medium compared with that in cells incubated in chloride-replete medium in the presence of 0.1 mM (Bu)2cAMP. No effects were found on basal levels. Several proteins specific to the steroidogenic machinery were quantified in mitochondria isolated from cells incubated with and without chloride by Western blot analysis after separation by PAGE. Omission of chloride increased (4-fold) the level of the steroidogenic acute regulatory (StAR) protein in the cells incubated with (Bu)2cAMP (0.1 mM). There was no increase in either the levels or activities of cytochrome P450 cholesterol side-chain cleavage enzyme (cytP450scc) or 3beta-hydroxysteroid dehydrogenase. No effects were found on the basal level of any of the proteins measured. These results are consistent with a cAMP-dependent regulatory role of chloride ion efflux in the control of steroidogenesis, which requires protein synthesis. It is proposed that this occurs by increases in StAR protein synthesis via a general increase in cAMP-dependent protein synthesis and/or by enhancement of the steroidogenic effects of StAR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression.

The luteinizing hormone (LH) plays a critical role in steroidogenesis, by stimulating cAMP-dependent protein kinase A (PKA) and phospholipase A2 activity, and by mobilizing calcium and chloride ions. In contrast, whether the ERK 1, 2 mitogen-activated protein (MAP) kinases are involved in LH-induced steroidogenesis is less obvious. Here, we sought to clarify this point in rat primary Leydig cel...

متن کامل

Inhibition of thromboxane a synthase activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells.

The cyclooxygenase-2 (COX2)-dependent inhibition of Leydig cell steroidogenesis has been demonstrated. To understand the mechanism for this effect of COX2, the present study examined the role of an enzyme downstream of COX2, namely thromboxane A synthase (TBXAS), in steroidogenesis. Inhibition of TBXAS activity with the inhibitor furegrelate induced a concentration-dependent increase in cAMP-in...

متن کامل

Novel Luteinizing Hormone-induced Mitochondrial Protein in MA-10 Mouse Leydig Tumor Cells CHARACTERIZATION OF THE BEROIDOGENIC ACUTE REGULATORY PROTEIN

The acute response of steroidogenic cells to trophic hormone stimulation is the mobilization of cholesterol from cellular stores to the mitochondrial outer membrane and the transfer of this cholesterol to the mitochondrial inner membrane where the first enzymatic step in steroidogenesis occurs. The transfer of cholesterol across the mitochondrial membranes is dependent upon de nouo protein synt...

متن کامل

Molecular Mechanisms of Thyroid Hormone-stimulated Steroidogenesis in Mouse Leydig Tumor Cells

Using a mouse Leydig tumor cell line, we explored the mechanisms involved in thyroid hormone-induced steroidogenic acute regulatory (StAR) protein gene expression, and steroidogenesis. Triiodothyronine (T3) induced a ;3.6-fold increase in the steady-state level of StAR mRNA which paralleled with those of the acute steroid response (;4.0-fold), as monitored by quantitative reverse transcriptase-...

متن کامل

Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse leydig cells.

Growth factors are known to play diverse roles in steroidogenesis, a process regulated by the mitochondrial steroidogenic acute regulatory (StAR) protein. The mechanism of action of one such growth factor, IGF-I, was investigated in mouse Leydig tumor (mLTC-1) cells to determine its potential role in the regulation of StAR expression. mLTC-1 cells treated with IGF-I demonstrated temporal and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 1997