The pathogenic role of the renal proximal tubular cell in diabetic nephropathy.
نویسندگان
چکیده
A growing body of evidence indicates that the renal proximal tubular epithelial cell (PTEC) plays an important role in the pathogenesis of diabetic nephropathy (DN). Microalbuminuria that intensifies over time to overt proteinuria, a hallmark of DN, is already known to activate the PTEC to induce tubulointerstitial inflammation. In addition to proteins, a number of diabetic substrates including high glucose per se, advanced glycation end-products and their carbonyl intermediates, angiotensin II, and ultrafiltered growth factors activate a number of signaling pathways including nuclear factor kappa B, protein kinase C, extracellular signal-regulated kinase 1/2, p38, signal transducer and activator of transcription-1 and the generation of reactive oxygen species, to culminate in tubular cell hypertrophy and the accumulation in the interstitium of a repertoire of chemokines, cytokines, growth factors and adhesion molecules capable of orchestrating further inflammation and fibrosis. More recently, the kallikrein-kinin system (KKS) and toll-like receptors (TLRs) in PTECs have been implicated in this process. While in vitro data suggest that the KKS contributes to the progression of DN, there are conflicting in vivo results on its precise role, which may in part be strain-dependent. On the other hand, there are both in vitro and in vivo data to suggest a role for both TLR2 and TLR4 in DN. In this review, we offer a critical appraisal of the events linking the participation of the PTEC to the pathogenesis of DN, which we believe may be collectively termed diabetic tubulopathy.
منابع مشابه
Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice.
Hyperuricemia has recently been recognized to be a risk factor for nephropathy in the diabetic subject. We tested the hypothesis that lowering uric acid with a xanthine oxidase inhibitor might reduce renal injury in the diabetic mouse. Diabetic (db/db) mice were treated with allopurinol or no treatment for 8 wk. Serum uric acid, renal function, and histology were assessed at death. The direct e...
متن کاملMetallothionein deficiency exacerbates diabetic nephropathy in streptozotocin-induced diabetic mice.
Oxidative stress and inflammation play important roles in diabetic complications, including diabetic nephropathy. Metallothionein (MT) is induced in proximal tubular epithelial cells as an antioxidant in the diabetic kidney; however, the role of MT in renal function remains unclear. We therefore investigated whether MT deficiency accelerates diabetic nephropathy through oxidative stress and inf...
متن کاملReduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy
Altered nucleoside levels may be linked to pathogenic signaling through adenosine receptors. We hypothesized that adenosine dysregulation contributes to fibrosis in diabetic kidney disease. Our findings indicate that high glucose levels and experimental diabetes decreased uptake activity through the equilibrative nucleoside transporter 1 (ENT1) in proximal tubule cells. In addition, a correlati...
متن کاملHigh Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells
Metallothionein (MT) is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2) are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by strep...
متن کاملStearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells
Saturated fatty acid (SFA)-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC) damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA) metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2012