Effects of ion bombardment on properties of d.c. sputtered superhard (Ti, Si, Al)N nanocomposite coatings
نویسنده
چکیده
A d.c. reactive magnetron sputtering technique was used to deposit (Ti, Si, Al)N films. The ion current density in the substrate was varied by the superimposition of an axially symmetric external magnetic field between the substrate and target. It was found that the variation of the magnetic field strength induced changes in the ion current density in the substrate with a consequent change in film properties. XRD patterns of sputtered films revealed changes of the lattice parameter (from 0.418 nm to approx. 0.429 nm) with the increase of the ionyatom arrival rate ratio. As already reported for samples prepared by r.f. sputtering, both can be assigned to a cubic B1 NaCl structure, typical for TiN. The lowest lattice parameter corresponds to a metastable phase where Si and Al atoms occupy Ti positions, while the highest lattice parameter corresponds to a system where at least a partial segregation of TiN and SiN phases already occurred, leading to the formation of a nanocomposite film of the type nc-TiAlNyax Si N . The mixture of the metastable phase with nanocomposite coating phases in some samples indicates that, in general, the 3 4 segregation of TiN and SiN phases is not complete. Hardness values as high as 45 GPa were measured. Small Si additions to x (Ti, Al)N coatings induce a reduction in the pin-on-disk sliding wear rate. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Basic structure and formation mechanism of Ti-Si-N superhard nanocomposite coatings
With the concept of digital factory, a research including experiment, kinetic Monte Carlo simulation, and ab initio calculation has been conducted to investigate the basic structure and the formation mechanism of Ti-Si-N superhard nanocomposite coatings. In sputtering PVD process, ion mass spectra and deposition rates have been measured. The measurement results show that the Ti-Si-N deposition ...
متن کاملSuperhard nanocomposite coatings. From basic science toward industrialization*
A variety of superhard coatings with Vickers plastic hardness exceeding 40 GPa have been reported by several research groups during the last five years (for recent reviews see refs [1,2]). However, one has to distinguish between superhard nanocomposites, such as nc-TiN/a-Si3N4, nc-TiN/a-Si3N4/aand nc-TiSi2, nc-(Ti1-xAlx)N/a-Si3N4, nc-TiN/TiB2, ncTiN/BN, etc. where the high hardness originates f...
متن کاملEffect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings
Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...
متن کاملStructural characteristics and tribological properties of TiAlCr(Si)CN nanocomposite films coated on the SPK 1.2080 tool steel using PVD technique
In the present work, structural characteristics and tribological properties of the Ti-Al-Cr-(Si)-C-N nanocomposite films coated on the SPK 1.2080 tool steel byPVD technique have been investigated. The PVD coating process was carried out using Ti (Si) Al and CrAl cathodes at 150 A current, 40 V bias and (Ar)0.1(CH4)0.45(N2)0.45 gas mixture for 50 min. Evaluations were conducted by OM, FESEM, AFM...
متن کاملMicrostructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings
In this work (Ti,Si,Al)N films were deposited using only rf or a combination of rf and d.c. reactive magnetron sputtering. Chemical composition, thickness, film structure and mechanical properties of the films were investigated by means of Rutherford backscattering (RBS), electron microprobe analysis (EPMA), ball-cratering, X-ray diffraction (XRD) and ultramicroindentation, respectively. All sa...
متن کامل