Plant Identification in an Open-world (LifeCLEF 2016)
نویسندگان
چکیده
The LifeCLEF plant identification challenge aims at evaluating plant identification methods and systems at a very large scale, close to the conditions of a real-world biodiversity monitoring scenario. The 2016-th edition was actually conducted on a set of more than 110K images illustrating 1000 plant species living in West Europe, built through a large-scale participatory sensing platform initiated in 2011 and which now involves tens of thousands of contributors. The main novelty over the previous years is that the identification task was evaluated as an open-set recognition problem, i.e. a problem in which the recognition system has to be robust to unknown and never seen categories. Beyond the brute-force classification across the known classes of the training set, the big challenge was thus to automatically reject the false positive classification hits that are caused by the unknown classes. This overview presents more precisely the resources and assessments of the challenge, summarizes the approaches and systems employed by the participating research groups, and provides an analysis of the main outcomes.
منابع مشابه
Bluefield (KDE TUT) at LifeCLEF 2016 Plant Identification Task
In this paper, we propose an automatic approach for plant image identification. We enhanced the well-known VGG 16-layers Convolutional Neural Network model [1] by replacing the last pooling layer with a Spatial Pyramid Pooling layer [2]. Rectified Linear Units (ReLU) are also replaced with Parametric ReLUs [3]. The enhanced model is trained without external dataset. A post processing method is ...
متن کاملPlant Identification System based on a Convolutional Neural Network for the LifeClef 2016 Plant Classification Task
In this paper, we describe the architecture of our plant classification system for the LifeClef 2016 challenge [14]. The objective of the task is to identify 1000 species of images of plants corresponding to 7 different plant organs, as well as automatically detecting invasive species from unknown classes. To address the challenge [10], we proposed a plant classification system that uses a conv...
متن کاملLifeCLEF Plant Identification Task 2015
The LifeCLEF plant identification challenge aims at evaluating plant identification methods and systems at a very large scale, close to the conditions of a real-world biodiversity monitoring scenario. The 2015 evaluation was actually conducted on a set of more than 100K images illustrating 1000 plant species living in West Europe. The main originality of this dataset is that it was built throug...
متن کاملOpen-set Plant Identification Using an Ensemble of Deep Convolutional Neural Networks
Open-set recognition, a challenging problem in computer vision, is concerned with identification or verification tasks where queries may belong to unknown classes. This work describes a fine-grained plant identification system consisting of an ensemble of deep convolutional neural networks, within an open-set identification framework. Two wellknown deep learning architectures of VGGNet and Goog...
متن کاملPlant Identification Based on Noisy Web Data: the Amazing Performance of Deep Learning (LifeCLEF 2017)
The 2017-th edition of the LifeCLEF plant identification challenge is an important milestone towards automated plant identification systems working at the scale of continental floras with 10.000 plant species living mainly in Europe and North America illustrated by a total of 1.1M images. Nowadays, such ambitious systems are enabled thanks to the conjunction of the dazzling recent progress in i...
متن کامل