The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model
نویسندگان
چکیده
The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameterization in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Secondorder statistics, namely variances and covariances, are evaluated, and simulated variances are compared with observationally based estimates. The soil moisture variance is related to second-order statistics of surface hydrological quantities. The persistence time scale of soil moisture anomalies is also evaluated. Model values of precipitation and evapotranspiration variability compare reasonably well with observationally based and reanalysis estimates. Soil moisture variability is compared with that simulated by the Variable Infiltration Capacity-2 Layer (VIC-2L) hydrological model driven with observed meteorological data. An equation is developed linking the variances and covariances of precipitation, evapotranspiration, and runoff to soil moisture variance via a transfer function. The transfer function is connected to soil moisture persistence in terms of lagged autocorrelation. Soil moisture persistence time scales are shorter in the Tropics and longer at high latitudes as is consistent with the relationship between soil moisture persistence and the latitudinal structure of potential evaporation found in earlier studies. In the Tropics, although the persistence of soil moisture anomalies is short and values of the transfer function small, high values of soil moisture variance are obtained because of high precipitation variability. At high latitudes, by contrast, high soil moisture variability is obtained despite modest precipitation variability since the persistence time scale of soil moisture anomalies is long. Model evapotranspiration estimates show little variability and soil moisture variability is dominated by precipitation and runoff, which account for about 90% of the soil moisture variance over land surface areas.
منابع مشابه
A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions
Knowledge about the spatio-temporal variability of soil moisture is essential to understand and predict processes in climate science and hydrology. A significant body of literature exists on the characterization of the spatial variability and the rank stability (also called temporal stability) of absolute soil moisture. Yet previous studies were generally based on short-term measurement campaig...
متن کاملGroundwater influences on soil moisture and surface evaporation
Soil hydrological processes play an important role in land-atmosphere system. In most climate models, these processes are described by soil moisture variations in the first 2 m of soil resulting from precipitation, evaporation, and transpiration. Groundwater effects on soil moisture variations and surface evaporation are either neglected or not explicitly treated. Although groundwater may have ...
متن کاملSpatial and temporal soil moisture and drought variability in the Upper Colorado River Basin
This research investigates the interannual variability of soil moisture as related to large-scale climate variability and also evaluates the spatial and temporal variability of modeled deep layer (40–140 cm) soil moisture in the Upper Colorado River Basin (UCRB). A three layers hydrological model VIC-3L (Variable Infiltration Capacity Model – 3 layers) was used to generate soil moisture in the ...
متن کاملForecasting of Groundwater Table and Water Budget under Different Drought Scenarios using MODFLOW Model (Case Study: Garbaygan Plain, Fars Province, Iran)
Groundwater drought is a natural hazard that develops when groundwater systems are affected by climatical drought, when climatical drought occures, first groundwater recharge, later groundwater levels and groundwater discharge decrease. The origin of drought is a deficit in precipitation and that takes place in all the elements that comprise the hydrological cycle (flow in the rivers, soil mois...
متن کاملScreening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temp...
متن کامل