Electrophysiological characterization of ATPases in native synaptic vesicles and synaptic plasma membranes.
نویسندگان
چکیده
Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes.
منابع مشابه
Synaptophysin binds to physophilin, a putative synaptic plasma membrane protein
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral memb...
متن کاملDelayed Synaptic Changes in Axotomized Spinal Motoneurons of Newborn Rats Associated with Progressive Neuronal Loss: Immunohistochemical, Ultrastructural, and Quantitative Study
Background and Objective: Sciatic nerve transection is characterized by a rapid wave of motoneuron death associated with progressive synaptic lesions. The purpose of this study was to evaluate the long term synaptic changes. Materials and Methods: This basic study was carried out on paraffin- or resin-em...
متن کاملSyntaxin-1A is excluded from recycling synaptic vesicles at nerve terminals.
At presynaptic terminals, intermixing during cycles of exocytosis and endocytosis challenges the molecular identity of the plasma and synaptic vesicle membranes. Although synaptic vesicle components are retrieved during recycling, the extent to which plasma membrane proteins enter the synaptic vesicle recycling pathway has not been examined. The target-SNARE (N-ethylmaleimide-sensitive factor a...
متن کاملSynaptic Vesicle Exocytosis Does a Lingering Kiss Lead to Fusion?
Direct optical measurements of single synaptic vesicles undergoing exocytosis at a synapse reveal rapid and complete transfer of membrane marker from the vesicle to the plasma membrane (; this issue of Neuron). Contact between the two membranes is consistent with free lipid exchange, such as might result from full fusion of the vesicle and plasma membranes.
متن کاملLavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 427 1 شماره
صفحات -
تاریخ انتشار 2010