Integrability of the constrained rigid body

نویسندگان

  • Jaume Llibre
  • Rafael Ramírez
  • Natalia Sadovskaia
چکیده

The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ ) = U(γ1, γ2, γ3). This motion subject to the constraint 〈ν,ω〉 = 0 with ν is a constant vector is known as the Suslov problem, and when ν = γ is the known Veselova problem, here ω= (ω1,ω2,ω3) is the angular velocity and 〈 , 〉 is the inner product of R3. We provide the following new integrable cases. J. Llibre ( ) Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain e-mail: [email protected] R. Ramírez Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Avinguda dels Països Catalans 26, 43007 Tarragona, Catalonia, Spain e-mail: [email protected] N. Sadovskaia Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Pau Gargallo 5, 08028 Barcelona, Catalonia, Spain e-mail: [email protected] (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that U =− 1 2I1I2 ( I1μ 2 1 + I2μ2 ) , where I1, I2, and I3 are the principal moments of inertia of the body, μ1 and μ2 are solutions of the firstorder partial differential equation γ3 ( ∂μ1 ∂γ2 − ∂μ2 ∂γ1 ) − γ2 ∂μ1 ∂γ3 + γ1 ∂μ2 ∂γ3 = 0. (ii) The Veselova problem is integrable for the potential U =− Ψ 2 1 +Ψ 2 2 2(I1γ 2 2 + I2γ 2 1 ) , where Ψ1 and Ψ2 are the solutions of the first-order partial differential equation (I2 − I1)γ1γ2 〈 γ, ∂Ψ2 ∂γ 〉 + I1γ2 ∂Ψ2 ∂γ1 − I2γ1 ∂Ψ2 ∂γ2 − p ( γ3 〈 γ, ∂Ψ1 ∂γ 〉 − ∂Ψ1 ∂γ3 ) = 0, where p = √ I1I2I3( γ 2 1 I1 + γ 2 2 I2 + γ 2 3 I3 ). 2274 J. Llibre et al. Also it is integrable when the potential U is a solution of the second-order partial differential equation 2 ∂U ∂τ3 + I1I2I3 ∂ 2U ∂τ 2 2 + (τ2 − I1 − I2 − I3) ∂ 2U ∂τ3∂τ2 + τ3 ∂ 2U ∂τ 2 3 = 0, where τ2 = I1γ 2 1 + I2γ 2 2 + I3γ 2 3 and τ3 = γ 2 1 I1 + γ 2 2 I2 + γ 2 3 I3 . Moreover, we show that these integrable cases contain as a particular case the previous known results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 30 40 12 v 1 9 A pr 2 00 3 Some multidimensional integrable cases of nonholonomic rigid body dynamics ∗

In this paper we study the dynamics of the constrained n–dimensional rigid body (the Suslov problem). We give a review of known integrable cases in three dimensions and present their higher dimensional generalizations. 1 The Suslov problem The equations of nonholonomic systems are not Hamiltonian. They are Hamiltonian with respect to the almost-Poisson brackets [5]. This is the reason that the ...

متن کامل

Symmetries and Integrability

This is a survey on finite-dimensional integrable dynamical systems related to Hamiltonian G-actions. Within a framework of noncommutative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamiltonian flows restricted to their invariant submanifolds generalizing classical Hess–Appel’rot case of a heavy r...

متن کامل

Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane

We systematize some results on the study of the equations of plane-parallel motion of symmetric fixed rigid bodies–pendulums located in a nonconservative force fields. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem of a plane-parallel motion of a free rigid body also located in a simil...

متن کامل

Trivially related lax pairs of the Sawada-Kotera equation

We show that a recently introduced Lax pair of the Sawada-Kotera equation is nota new one but is trivially related to the known old Lax pair. Using the so-called trivialcompositions of the old Lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial Lax pairs of KdV and Sawada-Kotera equations.

متن کامل

Analytic Non-integrability of the Suslov Problem

In this work we consider the Suslov problem, which consists of a rotation motion of a rigid body, whose center of mass is located at one axis of inertia, around a fixed point O in a constant gravity field restricted to a nonholonomic constraint. The integrability and non-integrability has been established by a number of authors for the nongeneric values of b = (b1, b2, b3) which is the unit vec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013