Slab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot
نویسندگان
چکیده
The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness. As compared with the previous structure finely optimized by introducing displacement of the air holes, via tuning the slab thickness, the quality factor can be enhanced by about 22%, and the ratio between the coupling coefficient and the nanocavity decay rate can be enhanced by about 13%. This can remarkably enhance the capability of the photonic crystal slab nanocavity for realizing the strong coupling interaction. The slab thickness tuning approach is feasible and significant for the experimental fabrication of the solid-state nanocavities.
منابع مشابه
High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED
We present a new approach which allows one to insert a silica nanosphere with a single quantum dot into a highQ photonic crystal slab nanocavity with an asymmetric nanohole in the center. The high Q cavity is optimized by adjusting air holes around the L3-type cavity based on three-dimensional finite-difference time-domain simulation. High Q value of 48 700 in this asymmetric cavity is achieved...
متن کاملPhotonic crystal nanocavity laser in an optically very thick slab.
A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that when T≥800 nm, over 90% of the laser output power cou...
متن کاملSpectrally selective infrared absorption in defect-mode photonic-crystal-slab cavity
Significantly enhanced absorption at the defect mode can be obtained at surfacenormal direction in a dielectric single-defect photonic-crystal-slab, with an absorption enhancement factor greater than 4,000. Complete absorption suppression within the photonic bandgap region can also be observed in defect-free photonic crystal cavities. High spectral selectivity and tunability is feasible with de...
متن کاملPhotonic crystal chips for optical interconnects and quantum information processing
We have recently demonstrated a number of functional photonic crystals devices and circuits, including an ultrafast, roomtemperature, low threshold, nanocavity laser with the direct modulation speed approaching 1 THz, an all-optical switch controlled with 60 fJ pulses and with the speed exceeding 200Hz, and a local, reversible tuning of individual quantum dots on a photonic crystal chip by up t...
متن کاملTuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness
We have found a blueshift in the cavity modes confined in two-dimensional photonic crystal microcavities when the thickness of the slab was varied uniformly by accurate dry etching. The shifts in the wavelength of the cavity modes were around 2 nm towards shorter wavelengths per nanometer reduced in the thickness of the slab. Three-dimensional plane wave expansion calculations showed that the o...
متن کامل