Semantic Segmentation of Outdoor Areas Using 3D Moment Invariants and Contextual Cues

نویسندگان

  • Sven Sickert
  • Joachim Denzler
چکیده

In this paper, we propose an approach for the semantic segmentation of a 3D point cloud using local 3D moment invariants and the integration of contextual information. Specifically, we focus on the task of analyzing forestal and urban areas which were recorded by terrestrial LiDAR scanners. We demonstrate how 3D moment invariants can be leveraged as local features and that they are on a par with established descriptors. Furthermore, we show how an iterative learning scheme can increase the overall quality by taking neighborhood relationships between classes into account. Our experiments show that the approach achieves very good results for a variety of tasks including both binary and multiclass settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Output Prediction for Semantic Perception in Autonomous Vehicles

A key challenge in the realization of autonomous vehicles is the machine’s ability to perceive its surrounding environment. This task is tackled through a model that partitions vehicle camera input into distinct semantic classes, by taking into account visual contextual cues. The use of structured machine learning models is investigated, which not only allow for complex input, but also arbitrar...

متن کامل

Joint Semantic Segmentation and 3D Reconstruction from Monocular Video

We present an approach for joint inference of 3D scene structure and semantic labeling for monocular video. Starting with monocular image stream, our framework produces a 3D volumetric semantic + occupancy map, which is much more useful than a series of 2D semantic label images or a sparse point cloud produced by traditional semantic segmentation and Structure from Motion(SfM) pipelines respect...

متن کامل

Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs

We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of largescale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich represen...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A Probabilistic Framework for Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues

In order to track dynamic objects in a robot’s environment, one must first segment the scene into a collection of separate objects. Most real-time robotic vision systems today rely on simple spatial relations to segment the scene into separate objects. However, such methods fail under a variety of realworld situations such as occlusions or crowds of closely-packed objects. We propose a probabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017