Molecular basis for ultraviolet vision in invertebrates.
نویسندگان
چکیده
Invertebrates are sensitive to a broad spectrum of light that ranges from UV to red. Color sensitivity in the UV plays an important role in foraging, navigation, and mate selection in both flying and terrestrial invertebrate animals. Here, we show that a single amino acid polymorphism is responsible for invertebrate UV vision. This residue (UV: lysine vs blue:asparagine or glutamate) corresponds to amino acid position glycine 90 (G90) in bovine rhodopsin, a site affected in autosomal dominant human congenital night blindness. Introduction of the positively charged lysine in invertebrates is likely to deprotonate the Schiff base chromophore and produce an UV visual pigment. This same position is responsible for regulating UV versus blue sensitivity in several bird species, suggesting that UV vision has arisen independently in invertebrate and vertebrate lineages by a similar molecular mechanism.
منابع مشابه
H-bond network around retinal regulates the evolution of ultraviolet and violet vision.
Ancestors of vertebrates used ultraviolet vision. Some descendants preserved ultraviolet vision, whereas some others replaced it with violet vision, and then, some of avian lineages reinvented ultraviolet vision. Ultraviolet (absorption at ∼360 nm) and violet (410-440 nm) sensitivities of visual pigments are known to be affected by around 20 amino acid substitutions. The present quantum mechani...
متن کاملMolecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda.
Studies on color vision in invertebrates have focused primarily on insect visual pigments, with little attention given to crustacean visual pigments. None of the blue-green-, blue-, or ultraviolet (UV)-sensitive-opsins have been identified in crustaceans. In addition, the discussion of visual pigments has been limited to long-wavelength-sensitive opsins in Pancrustacea. Here, we focused on Bran...
متن کاملTetrachromacy in a butterfly that has eight varieties of spectral receptors.
This paper presents the first evidence of tetrachromacy among invertebrates. The Japanese yellow swallowtail butterfly, Papilio xuthus, uses colour vision when foraging. The retina of Papilio is furnished with eight varieties of spectral receptors of six classes that are the ultraviolet (UV), violet, blue (narrow-band and wide-band), green (single-peaked and double-peaked), red and broad-band c...
متن کاملThe role of the Macrobenthic invertebrates in feeding some bony fishes - the economic in the southeast coast of the Caspian Sea
The sampling of fishes and Macrobenthic were performed in Goharbaran Mazandaran province by selecting four stations at a depth of 5 meters and four stations at a depth of 10 meters a monthly basis from May 2013 to April 2014 and fish samples of coastal blade caught were used. During the study, a total of 565902 Macrobenthic invertebrates isolates belonging to 22 species of 9 families. Oligochae...
متن کاملVertebrate Bistable Pigment Parapinopsin: Implications for Emergence of Visual Signaling and Neofunctionalization of Non-visual Pigment
Opsins are light-sensor proteins, each absorbing a specific wavelength of light. This, in turn, drives a specific G protein-mediated phototransduction cascade, leading to a photoreceptor cell response. Recent genome projects have revealed an unexpectedly large number of opsin genes for vision and non-visual photoreception in various animals. However, the significance of this multiplicity of ops...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 34 شماره
صفحات -
تاریخ انتشار 2003