Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.
نویسندگان
چکیده
Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.
منابع مشابه
Glutamate transporters regulate extrasynaptic NMDA receptor modulation of Kv2.1 potassium channels.
Delayed-rectifier Kv2.1 potassium channels regulate somatodendritic excitability during periods of repetitive, high-frequency activity. Recent evidence suggests that Kv2.1 channel modulation is linked to glutamatergic neurotransmission. Because NMDA-type glutamate receptors are critical regulators of synaptic plasticity, we investigated NMDA receptor modulation of Kv2.1 channels in rodent hippo...
متن کاملEnhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.
Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electro...
متن کاملZinc Selectively Blocks Neurosteroid-Sensitive Extrasynaptic δGABAA Receptors in the Hippocampus.
UNLABELLED Zinc (Zn(2+)) is an essential cofactor in mammalian cells and neurons. Zn(2+) is released from synaptic vesicles of certain nerve terminals in the hippocampus during neuronal activity. Zn(2+) has been shown to inhibit synaptic GABAA receptors and alter the hippocampal network excitability. However, the ability of Zn(2+) to block extrasynaptic receptors remains unclear. Endogenous neu...
متن کاملClustering of extrasynaptic GABA(A) receptors modulates tonic inhibition in cultured hippocampal neurons.
Tonic inhibition plays a crucial role in regulating neuronal excitability because it sets the threshold for action potential generation and integrates excitatory signals. Tonic currents are known to be largely mediated by extrasynaptic gamma-aminobutyric acid type A (GABA(A)) receptors that are persistently activated by submicromolar concentrations of ambient GABA. We recently reported that, in...
متن کاملDistribution of Extrasynaptic NMDA Receptors on Neurons
NMDA receptors are found in both synaptic and extrasynaptic locations on neurons. NMDA receptors also can be found on neurons in early stages prior to synaptogenesis, where they may be involved in migration and differentiation. Extrasynaptic NMDA receptors typically are associated with contacts with adjacent processes such as axons and glia. Extrasynaptic NMDA receptor clusters vary in size and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 20 شماره
صفحات -
تاریخ انتشار 2015