Partially Periodic Point Free Self–maps on Graphs, Surfaces and Other Spaces Jaume Llibre and Victor F. Sirvent

نویسندگان

  • JAUME LLIBRE
  • VICTOR F. SIRVENT
چکیده

Let (X, f) be a topological dynamical system. We say that it is partially periodic point free up to period n, if f does not have periodic points of periods smaller than n + 1. When X is a compact connected surface, a connected compact graph, or S ∨ S ∨ · · · ∨ S, we give conditions on X, so that there exist partially periodic point free maps up to period n. We also introduce the notion of a Lefschetz partially periodic point free map up period n. This is a weaker concept than partially periodic point free up period n. We characterize the Lefschetz partially periodic point free self–maps for the manifolds S× k · · · ×S, S × S with n ̸= m, CP , HP n and OP .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periods for Holomorphic Maps via Lefschetz Numbers

In this note we are concerned with fixed point theory for holomorphic self maps on complex manifolds. After the well-known Schwarz lemma on the unit disk, which assumes a fixed point, the Pick theorem was proved in [8]. This can be extended to a Pick-type theorem on hyperbolic Riemann surfaces as is shown in [5, 7]. For a more general type of space: open, connected and bounded subsets of a Bana...

متن کامل

Periods, Lefschetz Numbers and Entropy for a Class of Maps on a Bouquet of Circles

We consider some smooth maps on a bouquet of circles. For these maps we can compute the number of fixed points, the existence of periodic points and an exact formula for topological entropy. We use Lefschetz fixed point theory and actions of our maps on both the fundamental group and the first homology group.

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Lines of Principal Curvature on Canal Surfaces in R Ronaldo Garcia, Jaume Llibre and Jorge Sotomayor

In this paper are determined the principal curvatures and principal curvature lines on canal surfaces which are the envelopes of families of spheres with variable radius and centers moving along a closed regular curve in R. By means of a connection of the differential equations for these curvature lines and real Riccati equations, it is established that canal surfaces have at most two isolated ...

متن کامل

Continuous Maps of the Circle with Finitely Many Periodic Points

Let f be a continuous map of the circle into itself . The main purpose of this paper is to study the properties of the unstable manifold associated to a periodic point of f . Let 2(f) denote the nonwandering set of f . Suppose f has finitely many periodic points . Then, using the unstable manifolds associated to periodic points of f, three theorems are proved providing complete answers to the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015