Arithmetic Expanders and Deviation Bounds for Sums of Random Tensors
نویسنده
چکیده
We prove hypergraph variants of the celebrated Alon–Roichman theorem on spectral expansion of sparse random Cayley graphs. One of these variants implies that for every odd prime p and any ε > 0, there exists a set of directions D ⊆ Fp of size Op,ε(p (1−1/p+o(1))n) such that for every set A ⊆ Fp of density α, the fraction of lines in A with direction in D is within εα of the fraction of all lines in A. Our proof uses new deviation bounds for sums of independent random multi-linear forms taking values in a generalization of the Birkhoff polytope. The proof of our deviation bound is based on Dudley’s integral inequality and a probabilistic construction of ε-nets. Using the polynomial method we prove that a Cayley hypergraph with edges generated by a set D as above requires |D| ≥ Ωp(n) for (our notion of) spectral expansion for hypergraphs.
منابع مشابه
On the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملLarge deviations for sums of partly dependent random variables
We use and extend a method by Hoeffding to obtain strong large deviation bounds for sums of dependent random variables with suitable dependency structure. The method is based on breaking up the sum into sums of independent variables. Applications are given to U -statistics, random strings and random graphs.
متن کاملOn large deviations for sums of independent random variables
This paper considers large deviation results for sums of independent random variables, generalizing the result of Petrov (1968) by using a weaker and more natural condition on bounds of the cumulant generating functions of the sequence of random variables. MSC 60F10, 60G50, 62E20.
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملLower bounds for tails of sums of independent symmetric random variables
The approach of Kleitman (1970) and Kanter (1976) to multivariate concentration function inequalities is generalized in order to obtain for deviation probabilities of sums of independent symmetric random variables a lower bound depending only on deviation probabilities of the terms of the sum. This bound is optimal up to discretization effects, improves on a result of Nagaev (2001), and complem...
متن کامل