Development of Cell - laden Hydrogels with High Mechanical Strength for Tissue Engineering Applications
نویسنده
چکیده
The development of materials with biomimetic mechanical and biological properties is of great interest for regenerative medicine applications. Hydrogels are a promising class of biomaterials due to several advantages, however, the mechanical weakness remains a critical challenge for applications as tissue scaffolds. Particularly, scaffolds for load-bearing tissues such as cartilage and bone need to have great strength to keep their integrity after implantation. This thesis focused on the development of cell-laden hydrogels that have high mechanical strength and good biological properties. The first work of the thesis was to synthesize a biodegradable hydrogel, poly(glucose malate)methacrylate (PGMma), from two natural monomers glucose and malic acid. The PGMma hydrogels were cell-adhesive, and mechanically tunable by altering the formulation. In the second work, double-network (DN) hydrogels were prepared from two biomacromolecules, gellan gum and gelatin. The DN hydrogels prepared exhibited much higher strength than traditional hydrogels, the maximal strength being 6.9MPa. By using a cell-compatible two-step photocrosslinking process, it was also possible to encapsulate cells with high viability. Further research into the materials as tissue scaffolds showed that the DN hydrogels weakened when they were prepared at cell-compatible conditions, and stronger cell-hydrogel interaction is needed to improve the function of the encapsulated cells. Therefore in the last work, microgel-reinforced (MR) hydrogels that have better mechanical strength and biological properties in comparison to DN hydrogels were prepared by embedding stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels exhibited higher strength than the DN hydrogels and the gelatin hydrogels. The cells encapsulated in MR hydrogels showed high metabolic activity and high level of osteogenic behaviors similar to the cells encapsulated in gelatin hydrogels, which was not the case for DN hydrogels. The MR hydrogels, the final product of all these works could be potentially useful for load-bearing tissue scaffolds. Thesis Supervisor: Ali Khademhosseini Title: Associate professor of Medicine and Health Sciences and Technology, Harvard Medical School
منابع مشابه
Evaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method
Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...
متن کاملMicrofluidic fabrication of microengineered hydrogels and their application in tissue engineering.
Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great ben...
متن کاملDirect-write bioprinting of cell-laden methacrylated gelatin hydrogels.
Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing proc...
متن کاملThe mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules.
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing conditio...
متن کاملMechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks.
In this work, we present a class of hydrogels that leverage the favorable properties of the photo-cross-linkable hyaluronic acid (HA) and semi-interpenetrating collagen components. The mechanical properties of the semi-interpenetrating-network (semi-IPN) hydrogels far surpass those achievable with collagen gels or collagen gel-based semi-IPNs. Furthermore, the inclusion of the semi-interpenetra...
متن کامل