Coordinated activities of human dicer domains in regulatory RNA processing.

نویسندگان

  • Enbo Ma
  • Kaihong Zhou
  • Mary Anne Kidwell
  • Jennifer A Doudna
چکیده

The conserved ribonuclease Dicer generates microRNAs and short-interfering RNAs that guide gene silencing in eukaryotes. The specific contributions of human Dicer's structural domains to RNA product length and substrate preference are incompletely understood, due in part to the difficulties of Dicer purification. Here, we show that active forms of human Dicer can be assembled from recombinant polypeptides expressed in bacteria. Using this system, we find that three distinct modes of RNA recognition give rise to Dicer's fidelity and product length specificity. The first involves anchoring one end of a double-stranded RNA helix within the PAZ domain, which can assemble in trans with Dicer's catalytic domains to reconstitute an accurate but non-substrate-selective dicing activity. The second entails nonspecific RNA binding by the double-stranded RNA binding domain, an interaction that is essential for substrate recruitment in the absence of the PAZ domain. The third mode of recognition involves hairpin RNA loop recognition by the helicase domain, which ensures efficient processing of specific substrates. These results reveal distinct interactions of each Dicer domain with different RNA structural features and provide a facile system for investigating the molecular mechanisms of human microRNA biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing

During RNA interference and related gene regulatory pathways, the endonuclease Dicer cleaves precursor RNA molecules to produce microRNAs (miRNAs) and short interfering RNAs (siRNAs). Human cells encode a single Dicer enzyme that can associate with two different double-stranded RNA (dsRNA)-binding proteins, protein activator of PKR (PACT) and trans-activation response RNA-binding protein (TRBP)...

متن کامل

Single Processing Center Models for Human Dicer and Bacterial RNase III

Dicer is a multidomain ribonuclease that processes double-stranded RNAs (dsRNAs) to 21 nt small interfering RNAs (siRNAs) during RNA interference, and excises microRNAs from precursor hairpins. Dicer contains two domains related to the bacterial dsRNA-specific endonuclease, RNase III, which is known to function as a homodimer. Based on an X-ray structure of the Aquifex aeolicus RNase III, model...

متن کامل

How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzy...

متن کامل

Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA.

Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and...

متن کامل

TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments

The RNA-binding protein TRBP is a central component of the Dicer complex. Despite a decade of biochemical and structural studies, the essential functionality of TRBP in microRNA (miRNA) biogenesis remains unknown. Here we show that TRBP is an integral cofactor for time-efficient Dicer processing in RNA-crowded environments. We competed for Dicer processing of pre-miRNA with a large amount of ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 422 4  شماره 

صفحات  -

تاریخ انتشار 2012