Robustness analysis of the Escherichia coli metabolic network.
نویسندگان
چکیده
Genomic, biochemical, and strain-specific data can be assembled to define an in silico representation of the metabolic network for a select group of single cellular organisms. Flux-balance analysis and phenotypic phase planes derived therefrom have been developed and applied to analyze the metabolic capabilities and characteristics of Escherichia coli K-12. These analyses have shown the existence of seven essential reactions in the central metabolic pathways (glycolysis, pentose phosphate pathway, tricarboxylic acid cycle) for the growth in glucose minimal media. The corresponding seven gene products can be grouped into three categories: (1) pentose phosphate pathway genes, (2) three-carbon glycolytic genes, and (3) tricarboxylic acid cycle genes. Here we develop a procedure that calculates the sensitivity of optimal cellular growth to altered flux levels of these essential gene products. The results indicate that the E. coli metabolic network is robust with respect to the flux levels of these enzymes. The metabolic flux in the transketolase and the tricarboxylic acid cycle reactions can be reduced to 15% and 19%, respectively, of the optimal value without significantly influencing the optimal growth flux. The metabolic network also exhibited robustness with respect to the ribose-5-phosphate isomerase, and the ribose-5-phosephate isomerase flux was reduced to 28% of the optimal value without significantly effecting the optimal growth flux. The metabolic network exhibited limited robustness to the three-carbon glycolytic fluxes both increased and decreased. The development presented another dimension to the use of FBA to study the capabilities of metabolic networks.
منابع مشابه
Adaptive Genetic Robustness of Escherichia coli Metabolic Fluxes.
Genetic robustness refers to phenotypic invariance in the face of mutation and is a common characteristic of life, but its evolutionary origin is highly controversial. Genetic robustness could be an intrinsic property of biological systems, a result of direct natural selection, or a byproduct of selection for environmental robustness. To differentiate among these hypotheses, we analyze the meta...
متن کاملEvaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis
Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...
متن کاملEvolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks
Genome-scale metabolic networks are highly robust to the elimination of enzyme-coding genes. Their structure can evolve rapidly through mutations that eliminate such genes and through horizontal gene transfer that adds new enzyme-coding genes. Using flux balance analysis we study a vast space of metabolic network genotypes and their relationship to metabolic phenotypes, the ability to sustain l...
متن کاملSystematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple-knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico ...
متن کاملLethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli.
Recent genomic analyses on the cellular metabolic network show that reaction flux across enzymes are diverse and exhibit power-law behavior in its distribution. While intuition might suggest that the reactions with larger fluxes are more likely to be lethal under the blockade of its catalysing gene products or gene knockouts, we find, by in silico flux analysis, that the lethality rarely has co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology progress
دوره 16 6 شماره
صفحات -
تاریخ انتشار 2000