An Aleksandrov-type Estimate for a Parabolic Monge-ampère Equation
نویسندگان
چکیده
A classical result of Aleksandrov allows one to estimate the size of a convex function u at a point x in a bounded domain Ω in terms of the distance from x to the boundary of Ω if R Ω det Du dx < ∞. This estimate plays a prominent role in the existence and regularity theory of the Monge-Ampère equation. Jerison proved an extension of Aleksandrov’s result that provides a similar estimate, in some cases for which this integral is infinite. Gutiérrez and Huang proved a variant of the Aleksandrov estimate, relevant to solutions of a parabolic MongeAmpère equation. In this paper, we prove Jerison-like extensions to this parabolic estimate.
منابع مشابه
Aleksandrov-type Estimates for a Parabolic Monge-ampère Equation
A classical result of Aleksandrov allows us to estimate the size of a convex function u at a point x in a bounded domain Ω in terms of the distance from x to the boundary of Ω if ∫ Ω detD 2u dx < ∞. This estimate plays a prominent role in the existence and regularity theory of the Monge-Ampère equation. Jerison proved an extension of Aleksandrov’s result that provides a similar estimate, in som...
متن کاملOn Monge–Ampère type equations arising in optimal transportation problems
On Monge-Ampère Type Equations Arising In Optimal Transportation Problems Truyen Van Nguyen DOCTOR OF PHILOSOPHY Temple University, May, 2005 Professor Cristian E. Gutiérrez, Chair In this dissertation we study Monge-Ampère type equations arising in optimal transportation problems. We introduce notions of weak solutions, and prove the stability of solutions, the comparison principle and the ana...
متن کاملSmooth Approximations of the Aleksandrov Solution of the Monge-ampère Equation
We prove the existence of piecewise polynomials strictly convex smooth functions which converge uniformly on compact subsets to the Aleksandrov solution of the Monge-Ampère equation. We extend the Aleksandrov theory to right hand side only locally integrable and on convex bounded domains not necessarily strictly convex. The result suggests that for the numerical resolution of the equation, it i...
متن کاملON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS
This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .
متن کاملStandard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Mixed Methods
We prove a convergence result for a mixed finite element method for the Monge-Ampère equation to its weak solution in the sense of Aleksandrov. The unknowns in the formulation are the scalar variable and the Hessian matrix.
متن کامل