Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression.
نویسندگان
چکیده
The tumor suppressor gene product p53 can activate and repress transcription. Both transcriptional activation and repression are thought to involve the direct interaction of p53 with the basal transcriptional machinery. Previous work has demonstrated an in vitro interaction between p53 and the TATA-binding protein that requires amino acids 20 to 57 of p53 and amino acids 220 to 271 of the TATA-binding protein. The present results show that a 75-amino-acid segment from the carboxy terminus of p53 also can bind to the TATA-binding protein in vitro, and this interaction requires amino acids 217 to 268 of the TATA-binding protein, essentially the same domain that is required for interaction with the amino-terminal domain of p53. A carboxy-terminal segment of p53 can mediate repression when bound to DNA as a GAL4-p53 fusion protein. The amino- and carboxy-terminal p53 interactions occur within the domain on the TATA-binding protein to which the adenovirus 13S E1A oncoprotein has previously been shown to bind. The 13S E1A oncoprotein can dissociate the complex formed between the carboxy-terminal domain of p53 and the TATA-binding protein and relieve p53-mediated transcriptional repression. These results demonstrate that two independent domains of p53 can potentially interact with the TATA-binding protein, and they define a mechanism--relief of repression--by which the 13S E1A oncoprotein can activate transcription through the TATA motif.
منابع مشابه
Adenovirus E1A proteins interact with the cellular YY1 transcription factor.
The adenovirus 12S and 13S E1A proteins have been shown to relieve repression mediated by the cellular transcription factor YY1. The 13S E1A protein not only relieves repression but also activates transcription through YY1 binding sites. In this study, using a variety of in vivo and in vitro assays, we demonstrate that both E1A proteins can bind to YY1, although the 13S E1A protein binds more e...
متن کاملTranscriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein.
In addition to serving a role as a DNA binding-dependent transcriptional activator, p53 has been reported to repress a variety of promoters that lack p53 binding sites. Data from recent studies have suggested that this activity is mediated via an interaction between p53 and the TATA box binding protein (TBP). To investigate the functional relevance of this interaction in vivo, we have performed...
متن کاملDifferential regulation of p53-dependent and -independent proliferating cell nuclear antigen gene transcription by 12 S E1A oncoprotein requires CBP.
The tumor suppressor protein p53 and the adenoviral 12 S E1A oncoprotein are both known to elicit their biological effects mainly by regulating the transcription of important cellular genes. The human proliferating cell nuclear antigen (PCNA) gene is a transcriptional target of both p53 and E1A. We have analyzed the effects of p53 and 12 S E1A, separately as well as together, on PCNA gene trans...
متن کاملRelief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein.
The p53 tumor suppressor gene product is a transcriptional regulatory protein. It activates transcription from promoters that contain a p53 DNA binding site but represses many promoters that lack its binding site. High-level expression of wild-type p53 can induce apoptosis in certain cell types, and this activity can be blocked by the adenovirus E1B 19-kDa oncoprotein or by the cellular Bcl-2 o...
متن کاملTranscriptional control by adenovirus E1A conserved region 3 via p300/CBP
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 porti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 15 1 شماره
صفحات -
تاریخ انتشار 1995