Prediction of Protein Topologies Using Generalized IOHMMS and RNNs

نویسندگان

  • Gianluca Pollastri
  • Pierre Baldi
  • Alessandro Vullo
  • Paolo Frasconi
چکیده

We develop and test new machine learning methods for the prediction of topological representations of protein structures in the form of coarseor fine-grained contact or distance maps that are translation and rotation invariant. The methods are based on generalized input-output hidden Markov models (GIOHMMs) and generalized recursive neural networks (GRNNs). The methods are used to predict topology directly in the fine-grained case and, in the coarsegrained case, indirectly by first learning how to score candidate graphs and then using the scoring function to search the space of possible configurations. Computer simulations show that the predictors achieve state-of-the-art performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Injective Spaces in Generalized Topologies

In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...

متن کامل

On generalized topologies arising from mappings

Given a mapping $f:Xto X$ we naturally associate to it a monotonic map $gg_f:exp Xto exp X$ from the power set of $X$ into itself, thus inducing a generalized topology on $X$. In this paper we investigate some properties of generalized topologies which are defined by such a procedure.

متن کامل

Preorder Relators and Generalized Topologies

In this paper we investigate generalized topologies generated by a subbase of preorder relators and consider its application in the concept of the complement. We introduce the notion of principal generalized topologies obtained from the new type of open sets and study some of their important properties.

متن کامل

Prediction of Protein Topologies Using GIOHMMs and GRNNs

We develop and test new machine learning methods for the prediction of topological representations of protein structures in the form of coarse-or ne-grained contact or distance maps that are translation and rotation invariant. The methods are based on generalized input-output hidden Markov models (GIOHMMs) and generalized recursive neural networks (GRNNs). The methods are used to predict topolo...

متن کامل

Experiments on the application of IOHMMs to model financial returns series

Input-output hidden Markov models (IOHMM) are conditional hidden Markov models in which the emission (and possibly the transition) probabilities can be conditioned on an input sequence. For example, these conditional distributions can be linear, logistic, or nonlinear (using for example multilayer neural networks). We compare the generalization performance of several models which are special ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002