Behavior of Weak Type Bounds for High Dimensional Maximal Operators Defined by Certain Radial Measures
نویسنده
چکیده
As shown in [A1], the lowest constants appearing in the weak type (1, 1) inequalities satisfied by the centered Hardy-Littlewood maximal operator associated to certain finite radial measures, grow exponentially fast with the dimension. Here we extend this result to a wider class of radial measures and to some values of p > 1. Furthermore, we improve the previously known bounds for p = 1. Roughly speaking, whenever p ∈ (1, 1.03], if μ is defined by a radial, radially decreasing density satisfying some mild growth conditions, then the best constants cp,d,μ in the weak type (p, p) inequalities satisfy cp,d,μ ≥ 1.005 for all d sufficiently large. We also show that exponential increase of the best constants occurs for certain families of doubling measures, and for arbitrarily high values of p.
منابع مشابه
Dimension Dependency of the Weak Type (1, 1) Bounds for Maximal Functions Associated to Finite Radial Measures
We show that the best constants appearing in the weak type (1,1) inequalities satisfied by the centered Hardy-Littlewood maximal function associated to some finite radial measures, such as the standard gaussian measure, grow exponentially fast with the dimension.
متن کاملA weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operators
We study one-dimensional Schrödinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials. MSC2010: 34L15, 34L40, 81Q10, 81Q12
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملSandwich-type theorems for a class of integral operators with special properties
In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.
متن کامل