Conditional Monte Carlo Estimation of Quantile Sensitivities
نویسندگان
چکیده
E quantile sensitivities is important in many optimization applications, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming. Recently, Hong (Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118–130) derived a batched infinitesimal perturbation analysis estimator for quantile sensitivities, and Liu and Hong (Liu, G., L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Res. Logist. 56 511–525) derived a kernel estimator. Both of these estimators are consistent with convergence rates bounded by n−1/3 and n−2/5, respectively. In this paper, we use conditional Monte Carlo to derive a consistent quantile sensitivity estimator that improves upon these convergence rates and requires no batching or binning. We illustrate the new estimator using a simple but realistic portfolio credit risk example, for which the previous work is inapplicable.
منابع مشابه
Conditional Quantile Estimation for Garch Models
Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study esti...
متن کاملHigh quantile regression for extreme events
For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...
متن کاملEfficient Semiparametric Estimation of a Partially Linear Quantile Regression Model
This paper is concerned with estimating a conditional quantile function that is assumed to be partially linear+ The paper develops a simple estimator of the parametric component of the conditional quantile+ The semiparametric efficiency bound for the parametric component is derived, and two types of efficient estimators are considered+ Asymptotic properties of the proposed estimators are establ...
متن کاملThe Second-order Bias and MSE of Quantile Estimators
The finite sample theory using higher order asymptotics provides better approximations of the bias and mean squared error (MSE) for a class of estimators. However, no finite sample theory result is available for the quantile regression and the literature on the quantile regression has been entirely on the first-order asymptotic theory. This paper develops new analytical results on the second-or...
متن کاملEstimating Conditional Quantiles for Financial Time Series by Bootstrapping and Subsampling Methods
Value at Risk (VaR) has become one of the most commonly used measures of risk for nancial risk management. Econometrically, a suitable conditional quantile model can provide accurate estimation for this purpose. However due to the special dependence features of nancial time series, a classical econometric methodology does not lend itself for this purpose . In this paper, the main objective is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Management Science
دوره 55 شماره
صفحات -
تاریخ انتشار 2009